
Inflectra White Paper Series: DevOps

DevOps in Seven 
Easy Steps

7 Elements of Effective DevOps

The marriage of agile methodologies, virtualized and cloud computing, 
and on-demand infrastructure has revolutionized the creation and 
management of software and IT resources. All organizations can benefit 
from these changes using DevOps - how much and in what ways 
depends on specific technological and regulatory constraints.

1.	 Plan: “define” the requirements and business value, then “plan” 
activities and milestones

2.	 Create: write and debug code, manage and version control the 
source code, then build using continuous integration

3.	 Verify: continuously test using a range of approaches to improve 
quality and provide feedback on business risks

4.	 Package: reliably create a package of the application, using artifact 
repositories and tailored deployment strategies

5.	 Release: manage each release, its artifacts and configuration, 
automate its deployment, then track and manage change

6.	 Configure: automate and configure infrastructure provisioning

7.	 Monitor: collect and act on monitoring of performance, security, 
business metrics, and end–user experience and feedback.

DevOps With Inflectra

•	 Plan: SpiraPlan® offers a turnkey solution for managing your 
projects and supports agile, as well as waterfall and hybrid

•	 Create: SpiraPlan® includes add-ons for the most popular IDEs. 
TaraVault® from Inflectra provides an enterprise-grade Source Code 
Management solution for both Git and Subversion

•	 Verify: SpiraPlan® offers world-class test case-based manual 
testing, as well as freeform exploratory testing. It also provides 
plugins for the most popular automated testing frameworks to 
tie unit tests directly to requirements. Rapise® is a powerful 
automation tool for both UI and API testing

•	 Package: SpiraPlan® helps you auto-generate release 
documentation, as well as the final code and installation files

•	 Release: SpiraPlan® supports change and release management 
with simple workflows that can be customized to include robust 
approval routing, signoffs, and electronic signatures

•	 Monitor: KronoDesk® offers streamlined customer support and 
helps you collect and action user feedback.

Visit us at www.inflectra.com for a free trial
Or get in touch with us: sales@inflectra.com, 1-866-572-5878 or +1 202-558-6885 (international)

Copyright 2006-2018, Inflectra Corporation

As many users, projects, tests, 
releases, items, API calls as you 
want. All pricing is based on 
concurrent users.

Our one goal is to help you 
succeed. We care deeply about 
giving you the best quality service 
and support you’ve ever had. 

Flexible options to make your 
life easier. Use on desktop or 
mobile; your servers or our cloud, 
sensible add-ons, fairly priced.

Inflectra: Software Built For You



1. Plan
Typically, in DevOps, planning is composed of two things: “define” 
and “plan”. “Define” a common understanding of the requirements 
and business value of the product being developed. “Plan” out the 
requirements into a set of activities, milestones, and required roles. 
The nature of the plan will depend on the project management 
methodology being used (agile projects will use high-level and fluid 
user stories whereas waterfall projects will use more stable and 
prescribed requirements and deadlines).

2. Create
Writing & Debugging Code: The choice of tools to design, write, 
compile, and debug code is usually based on the technologies 
chosen to create the product. Choose tools that make documenting, 
refactoring, testing, and understanding the code easier.

Managing & Versioning Code: A robust set of tools and practices 
to store and manage source code is essential. The choice between 
Subversion and Git (the two-leading platforms) will depend on 
your needs. You may also need code analysis, code review, code 
documenting tools, or code security and performance analysis.

Building & Integrating Code: The final phase in this step is 
to integrate all code into a single build. Choose a Continuous 
Integration (CI) tool that works well with the rest of your DevOps 
toolchain. Use extensions that support your compilers, IDEs, SCM 
tools, databases, and deployment processes. Ideally, your CI tool 
should report directly into your ALM suite. Many CI tools can also 
execute jobs to orchestrate other parts of the DevOps toolchain, 
such as automated testing, staging, deployment, and notifications.

3. Verify
Testing and verification mitigates technical risks, helps management 
understand the quality of the software, and provide metrics to 
determine if the build is ready for deployment and production. 
Where possible, use continuous testing tools and processes that 
provide real-time feedback on the risks in the system.

Unit & Integration Testing: Most organizations using agile 
methodologies will practice Test Driven Development (TDD) to ensure 
there is good test coverage of the code. Ideally, you should also use 
the same unit testing frameworks for automated integration tests 
that test multiple modules of code at once.

User Interface Testing: UI is often the most frequently changing part 
of the application and the hardest to test. Make sure you have the 
appropriate tools for testing the type of UI you are using (e.g. web, 
mobile, desktop, console) and that you understand which parts of 
the UI testing should be automated.

API Testing is important if the product is to be part of an 
ecosystem. The days of monolithic applications are limited: 
having well-maintained, versioned, and tested APIs can be a big 
differentiator for your products. External developers prefer not 
having to rewrite their code every time you ship a new version of 
your product.

Release Deployment Automation: For cloud solutions deployment 
may mean pushing the package to a production environment, 
applying the changes, initiating alerts and notifications to users, 
and changing feature flags to enable functionality. For on-premise 
products, it could involve uploading an installation package to 
a customer portal and emailing it to customers, or having an 
automated update process on a customer’s environment pick up 
the package from a central service. Whatever the process, make it 
as automated as possible, and integrated into other parts of the 
release process to reduce the likelihood of errors creeping in.

6. Configure
This step in the DevOps toolchain refers to the trend away from 
large, fixed infrastructure resources toward more flexible, on-demand 
provisioning. First was the move from physical servers running 
a single OS to virtualized environments. Next, was the transition 
to Infrastructure as a Service (IaaS) platforms like Amazon Web 
Services (AWS) that turn the process of provisioning a new server 
from a month-long purchasing and installation project, to a five-
minute task. Then came Infrastructure as Code (IaC) that allows you 
to design, implement, and deploy an application’s infrastructure 
entirely through code. The most recent phase is Continuous 
Configuration Automation (CCA) that lets you change, configure, and 
automate infrastructure provisioning in the same way that CI tools 
let you automate the building of software packages. 

7. Monitor
One of the most important parts of DevOps is having a robust set 
of monitoring, tracing and event reporting tools to ensure that 
unanticipated changes are detected and remediated before they 
impact users. Aspects of monitoring to consider include:

System Monitoring: Real-time, automated monitoring of your 
systems and infrastructure. This should cover: Functional Monitoring 
- are all systems working correctly, are the APIs available, are there 
any outages?; Performance Monitoring - is the system responding 
normally to the current user load?; and Security Monitoring - is 
the system secure with no exploitable vulnerabilities or active 
cyberattacks?

Business Monitoring: Tie business metrics to your DevOps 
monitoring platform. There are free tools (such as Google Analytics), 
plus several commercial applications that can monitor and alert 
based on business transactions and other metrics.

User Monitoring: Users are also an important part of the monitoring 
process. Ensure the tools used to support users are fully integrated 
into your monitoring environment. For example, your help desk 
system can be used to generate metrics around issues raised 
with each release. Beyond providing insight into the stability and 
usability of your system, feedback and ideas from your users are 
a critical resource that should be fed back into the start of the 
DevOps toolchain.

Exploratory & Manual Testing: Automated tests will not catch all 
issues. You need skilled human testers looking at the application 
during and after development. Traditional, scripted manual testing 
or User Acceptance Testing (UAT) is often used in industries 
where there are regulatory and/or legal requirements to have 
users test every path. In other cases more freeform, unscripted, 
exploratory testing is helpful. Here, testers follow their own path 
and intuition to seek out issues that may have been overlooked.

Performance & Security Testing: Beyond product functionality, 
test performance (how well it works under different loads) and 
security (how vulnerable it is to security penetration). Make sure 
these tools interoperate with your ALM and DevOps toolchain.

4. Package
This vital aspect of DevOps is often overlooked. You need to 
have a repeatable, reliable process to package all the code, 
documentation, data, and other artifacts created in the CI build 
pipeline for deployment and release. The process depends on 
how the software is to be delivered 
and used: it will be very different 
for software that customers 
deploy themselves 
compared to Software as 
a Service (SaaS).

Artifact Repository: 
You need tools and 
processes that automate 
the identification 
and packaging of 
changed items in the 
software. You can use 
this repository to auto-
generate release notes, and 
system or API documentation to 
reduce omissions or errors.

Cloud Deployment Strategies: For cloud-based deployment, 
package your software and associated artifacts to: facilitate easy 
distribution to your cloud platform; ensure it can be rolled back 
quickly if needed; reduce the burden on the release process; and 
align with your cloud tenancy model. For single-tenant systems 
the process may be similar to releasing a download product. For 
multi-tenant systems, consider tools such as “feature flags” so 
you can release the same deployment to all customers.

Images and Containers: For cloud applications, you can package a 
copy of the application, entire OS, and pre-requisite services (e.g. 
web and database servers). This is a “machine image” or virtual 
machine (VM) image. This is quick to deploy and restore but 
creates significant duplication of the stack and incurs additional 
license and maintenance costs. Alternatively, containerize your 
application with a minimal set of infrastructure services into a 
single unit (a container). These can be deployed multiple times in 
the same OS machine image, bringing deployment and scalability 
advantages, with reduced infrastructure overhead.

On-Premise Strategies: Determine how to combine all build 
artifacts into a single package that can easily be delivered to 
the customer. This package should ideally be self-installing. IT 
staff should be provided documentation for deployment and 
maintenance, and be able to configure the installation for their 
environment, understand the prerequisites. Alternatively, you 
can provide a Virtual Machine (VM) that can be deployed as a 
single image onto on-premise infrastructure.

5. Release
Release Management is how to describe, document, and manage 
the different versions of a product, and is the foundation 
of this DevOps step. The approach to release management 
depends on your software lifecycle and release tempo. Whatever 
the approach, document what releases are planned, what 
functionality each release contains, and what packages are to 
be deployed. This process should, ideally, be automated: if a 
feature is removed the system “recalculates” what assets (e.g. 
code, tests, documentation) to remove from the release. When 

choosing a release management 
tool, make sure you understand 

your process and needs. For 
instance, do you need 

a tool that supports 
release baselining, or 
formal release approval 
workflow, with signatures, 
signoff, and auditing? Or 
is creating a release and 
immediately deploying 
against it sufficient?

Configuration 
Management: You often 

need to maintain a history 
of the different configurations of 

a product. This may primarily be the 
source code, documentation, packages, and artifacts stored in 
the SCM system. More regulated environments may need a full 
inventory of items related to each release. Depending on the 
type of information, you may be able to leverage your existing 
SCM or ALM tool to manage any additional items. Make sure to 
also maintain a branching and merging strategy.

Change Management: A product is not static once it is released. 
There will be bugs to track, enhancements to record, and change 
requests to approve. Make sure there is a well-documented 
change management process, agreed by management, that 
aligns with any quality or security standards your organization 
follows (e.g. ISO 9001, PCI-DSS, SSAE 16). Some change 
management strategies are very lightweight, essentially an 
issue triaging workflow. Other strategies are more complex, with 
multiple levels of approval, external audit steps, and regulatory 
oversight. Ensure your change management tools include 
the necessary functionality to handle your process. Finally, a 
clear release and communications strategy for the production 
environment will help your users know what to expect.


