
 

 

 

Date: May 4th, 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using Rapise® with Selenium® 

Cross-Browser Testing Using Rapise & Selenium Together 

Inflectra Corporation 

 

  



 

 

 

 

 

Page 1 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

Contents 

 

Introduction ......................................... 1 

1. Setting up Selenium ....................... 2 

2. Playing & Recording Tests ............ 9 

3. Using Native Selenium Code ....... 14 

 

Introduction 

Rapise® is a next generation software test 

automation tool that leverages the power of 

open architecture to improve application quality 

and reduce time to market. 

When developing and testing a web application 

you naturally need to test it with different web 

browsers and multiple version of each web 

browser. With Rapise natively you can record a 

test script using one browser and then play it 

back using Mozilla Firefox, Google Chrome or 

Microsoft Internet Explorer. 

In addition, you can use Rapise with the open-

source Selenium WebDriver framework to play 

back the same tests against other browsers 

such as Apple Safari and Opera (as well as IE, 

Firefox and Chome). You can also use Rapise to 

write native Selenium code for cases where you 

want to use existing Selenium WebDriver logic. 

For information on using Rapise itself, please 

refer to the Rapise User Guide.

  



 

 

Page 2 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

1. Setting up Selenium 

This section describes the process for setting up Rapise to work with Selenium. Since Rapise is a 

Windows® application, you can use a single computer running Rapise to use the following web browsers: 

• Internet Explorer 

• Google Chrome 

• Mozilla Firefox 

• Opera 

• Microsoft Edge 

However because Safari only runs on Apple Mac computers, you will need to use two computers (a Mac 

running Safari) and a PC running Rapise to test using the Apple Safari web browser: 

 

1.1. Configuring Selenium on a PC 

Once you have installed Rapise on your local computer, you need to perform the following steps to 

configure each of the web browsers to use Selenium and Rapise: 

Firefox 

Unlike the other web browsers, Firefox does not require  anything special to be done, it already includes a 

built-in plugin for use by Selenium WebDriver. However if you start using Rapise with Firefox and you see 

the following issue when using Rapise with Firefox and Selenium: 

 

 Then, look inside the instance of Firefox that was started by Selenium and you should see: 



 

 

Page 3 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

 

Then it means that the version of Selenium WebDriver that shipped with Rapise is no longer compatible 

with the installed version for Firefox. The solution is straightforward, just go to the main Selenium website: 

http://www.seleniumhq.org/download/ and then download the C# WebDriver Bindings: 

 

Download the Selenium-dotnet-x.x.x.zip file from the website. Proceed to unzip the archive and then 

look in the net40 subfolder and extract the following two files and copy into the C:\Program Files 

(x86)\Inflectra\Rapise\Bin folder (or wherever you installed Rapise): 

• WebDriver.dll 

• WebDriver.Support.dll 

Note: You will need to close Rapise before copying these files into the Bin folder. 

Microsoft Edge 

To use Selenium with Microsoft Edge, you will need to download the latest version of the Edge Driver 

from the Microsoft website: 

https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/#downloads 
 

 
 
Create a new folder on your local PC called: 

http://www.seleniumhq.org/download/


 

 

Page 4 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

 
C:\Program Files (x86)\Microsoft Web Driver 
 
Download the MicrosoftWebDriver.exe to this local folder you just created: 

 

 

Internet Explorer 

To use Selenium with Internet Explorer, you will need to download the latest version of the Internet 

Explorer IE Driver: 

http://selenium-release.storage.googleapis.com/index.html  

The list of versions at time of writing was: 

 

When you click on the folder for the latest version you will see the various files that can be downloaded: 

 

http://selenium-release.storage.googleapis.com/index.html


 

 

Page 5 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

Download the IEDriverServer_XXXX_X.X.X.zip to your local PC: 

• IEDriverServer_Win32_X.X.X.zip (for 32-bit Internet Explorer) 

• IEDriverServer_x64_X.X.X.zip (for 64-bit Internet Explorer) 

The file inside the zip archive is called IEDriverServer.exe and you need to copy it into the C:\Program 

Files (x86)\Inflectra\Rapise\Bin folder (or wherever you installed Rapise). 

Chrome 

To use Selenium with Google Chrome, you will need to download the latest version of the Chrome Driver: 

http://chromedriver.storage.googleapis.com/index.html  

The list of versions at time of writing was: 

 

When you click on the folder for the latest version you will see the various files that can be downloaded: 

 

Download the chromedriver_win32.zip to your local PC. 

The file inside the zip archive is called chromedriver.exe and you need to copy it into the C:\Program 

Files (x86)\Inflectra\Rapise\Bin folder (or wherever you installed Rapise). 

Opera 

To use Selenium with Opera, you will need to download the latest version of the Opera Driver: 

https://github.com/operasoftware/operachromiumdriver/releases  

This page will list the latest version of the driver at the top of the page: 

http://chromedriver.storage.googleapis.com/index.html
https://github.com/operasoftware/operachromiumdriver/releases


 

 

Page 6 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

 

Download the operadriver_winXX.zip to your local PC: 

• operadriver_win32.zip (for 32-bit Opera) 

• operadriver_win64.zip (for 64-bit Opera) 

The file inside the zip archive is called operadriver.exe and you need to copy it into the C:\Program 

Files (x86)\Inflectra\Rapise\Bin folder (or wherever you installed Rapise). 

  



 

 

Page 7 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

1.2. Installing Selenium on a Mac 

The reason for using Selenium running on a Mac is to be able to execute tests against the Safari web 

browser. So although you can also use the Mac to test with Firefox, Opera and Chrome, we do not 

recommend this as it adds needless complexity. 

Safari 

The first thing you need to do is download the latest version of the Selenium server for Apple Mac 

computers: 

http://selenium-release.storage.googleapis.com/index.html  

The list of versions at time of writing was: 

 

When you click on the folder for the latest version you will see the various files that can be downloaded: 

 

Download the selenium-server-standalone-X.XX.X.jar to the Mac. 

Run this Java application by double clicking the downloaded .JAR file in Finder. This will startup the 

Selenium server. 

Note: You will need to have the Java (ideally the latest version) installed on the Mac first.  

Once you have this running, you will need to then download the actual Safari WebDriver plugin. This can 

be found at the following location: 

https://github.com/SeleniumHQ/selenium/wiki/SafariDriver  

http://selenium-release.storage.googleapis.com/index.html
https://github.com/SeleniumHQ/selenium/wiki/SafariDriver


 

 

Page 8 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

 

Download the SafariDriver.safariextz file to the local computer and the double-click to install in Safari: 

 

Once that has been installed, you are now ready to test web applications running on Safari. The final step 

is to tell Rapise where it can find that instance of Selenium. To do that, open up Rapise (on your PC) and 

click on Options > Tools and then click on the ‘Selenium Settings…’ entry: 

 

Now you need to change the Uri field to point to your Mac. The format of the URI will be: 

• http://<IP or DNS name of MAC computer>:4444/wd/hub 

(for example it could be http://test-mac01.local:4444/wd/hub or http://192.168.0.52:4444/wd/hub)  

http://test-mac01.local:4444/wd/hub
http://192.168.0.52:4444/wd/hub


 

 

Page 9 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

2. Playing & Recording Tests 

Now that you have installed and configured the integration between Rapise and Selenium, we shall 

discuss how to use Selenium with Rapise to record and play tests. 

Now one of the important points is that there are some limitations as to the operations that can be 

performed using Selenium-based web browsers as opposed to the native browsers supported by Rapise: 

Feature Rapise Native Browser Selenium Browser 

Learn HTML Objects Yes (Only in Web Spy) 

Record HTML Events Yes No 

Playback HTML Events Yes Yes 

Web Spy Yes Yes 

Learn Java Applets Yes No 

Learn Silverlight Controls Yes No 

Manual Testing Yes No 

 

So if you are planning on using Rapise to record a test script by clicking HTML objects and having Rapise 

create the script using the learned objects and adding the events (DoClick, SetText, etc.) then you will 

need to use one of the native browsers (Chrome, IE, Firefox) to create the test script. You can then 

playback the same test in either the native or Selenium browsers. 

If you are planning on using Rapise to learn objects using the Web Spy, and then create the test script 

from those objects by either dragging the object methods and properties from the Object Tree into the test 

script or just using Intellisense to type the methods (DoClick, SetText, etc.) then you can use either a 

native or Selenium web browser just as easily. 

For most users, the primary reason for using the Selenium web browsers will be to playback their tests on 

a greater number of browsers or to leverage existing Selenium WebDriver scripts created outside of 

Rapise (see section 3). 

2.1. Managing the Selenium Profiles 

Rapise allows you to maintain different profiles for your different installed Selenium web browsers (both 

on the same machine as Rapise and also those running on a remote Selenium WebDriver server), To see 

the different Selenium profiles, go to the Options ribbon: 

 

Click on the Selenium Settings option in the Web Testing section, this will bring up the Selenium profile 

manager: 



 

 

Page 10 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

 

By default there is one profile for each of the Selenium WebDriver supported web browsers (Chrome, 

Firefox, Internet Explorer, Opera, Safari). However you can clone and change the profiles if you want to 

have different versions of the browsers (e.g. a local instance of Firefox and one running on a remote 

Selenium server). 

Most users will only need to change the Uri field of the Safari web browser (see section 1.1) since the 

defaults are typically sufficient for most testing needs. 

2.2. Recording using Selenium 

To start recording a web testing using a Selenium WebDriver based browser, make sure you change the 

test’s web browser parameter to one of the Selenium profiles: 

 

When you click the Record/Learn button in the main Test ribbon you will see the following Recording 

Activity Dialog: 



 

 

Page 11 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

 

You will notice that the Verify, and Learn options are not available. If you want to use these tools you will 

need to use a native browser (non-Selenium) instead. 

When using a Selenium profile for recording, you will need to use the Spy (Ctrl+5) tool to do the learning 

of objects on the web page. This brings up the Web Spy: 

 

When using the Web Spy with a Selenium profile you will notice that the web browser icon / name shows 

“Selenium” rather than the browser name and the option to Track an item (CTRL+T) is not present. That 

means you need to select the HTML DOM object in the DOM Tree and learn it from there (rather than 

clicking on the web page itself which is possible when using a native browser profile). 

When you choose to Learn an object in the DOM tree it will be displayed in the Recording Activity Dialog 

as a new Learned Object: 



 

 

Page 12 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

 

Objects Learned using a Selenium profile will be added to the Rapise Object Tree in the usual way and 

as is typical with Learning, you have the option to specify an Action in the Recording Activity Grid (e.g. 

change Learn to Click) in which case test script code is also generated. 

Tip: Due to the inherent limitations in recording using a Selenium browser profile (vs. a native browser 

profile) most users will record their scripts using a native browser and then use Selenium primarily for 

debugging using the Web Spy and playback. 

2.3. Playback using Selenium 

To playback a web test using a Selenium web browser profile, simply choose the appropriate profile in the 

test Start Page: 

 

Then click the Play button on the main Test ribbon. The test will now start execution. Unlike recording 

there is nothing different in the way Rapise handles the playback of a Selenium test. The only difference 

will be that if the test uses non-HTML technologies such as Silverlight, Java, etc. those parts of the test 

will fail. 



 

 

Page 13 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

 

  



 

 

Page 14 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

3. Using Native Selenium Code 

When using the standard Rapise Record, Learn, and Web Spy tools you can create your web tests using 

the Rapise built-in Object Tree. This lets you design your tests using a higher level of abstraction than 

working directly with Selenium WebDriver. 

For example, you can learn an object SeS("EditButton") that points to a dynamic XPATH or CSS 

query that the automation engineer knows will be accurate even if the data on the page changes (for 

example). The QA analyst can then simply drag and drop these Rapise objects from the Object Tree into 

the test script (e.g. SeS("EditButton").DoClick()) to perform the desired action. 

Sometimes however you will want to be able to run standard Selenium raw WebDriver code inside Rapise 

using the standard Selenium WebDriver API functions 

(http://www.seleniumhq.org/docs/03_webdriver.jsp). Rapise allows you to do this using the special 

WebDriver global object: 

 

The WebDriver object implements the various standard Selenium WebDriver API calls for automating the 

web browser. There is a sample available for Rapise called “UsingSelenium” that illustrates using the 

WebDriver code directly, but for completeness, here is a sample that uses the 

www.libraryinformationsystem.org same web site and performs some simple actions: 

3.1. Using the Rapise Visual Language (RVL) 

An example test script using these objects and the Rapise Visual Language (RVL) scriptless option is 

shown below: 

 

http://www.seleniumhq.org/docs/03_webdriver.jsp
http://www.libraryinformationsystem.org/


 

 

Page 15 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

 

3.2. Using JavaScript Scripting 

An example test script using these objects and the Rapise JavaScript scripting option is shown below: 

//First create the Firefox driver 

WebDriver.CreateFirefoxDriver(); 

 

//Open the URL for the www.libraryinformationsystem.org website: 

WebDriver.SetUrl('http://www.libraryinformationsystem.org'); 

  

//Find the body element and verify the text in it 

var el = WebDriver.FindElementByXPath("//body"); 

Tester.Assert("Text found in BODY", el.GetText().indexOf("Library Information System") 

!= -1); 

 

//Click on the login link 

var logInLink = WebDriver.FindElementById('HeadLoginView_HeadLoginStatus'); 

logInLink.Click(); 

  

//Make sure the input textbox is as expected 

var userName = WebDriver.FindElementByCssSelector("html > body > form > div:nth-of-

type(3) > div:nth-of-type(2) > div:nth-of-type(2) > fieldset > p:first-of-type > 

input"); 

Tester.AssertEqual("class is 'textbox'", "textbox", userName.GetAttribute("class")); 

  

//Go to a different URL (http://libraryinformationsystem.org/HtmlTest.htm) 

WebDriver.SetUrl('http://www.libraryinformationsystem.org/HtmlTest.htm'); 

  

//Click on the Alert box 

var alertBtn = WebDriver.FindElementById("btnAlert"); 

alertBtn.Click(); 

  

//Switch to this alert box and close 

var alertElement = WebDriver.SwitchToAlert(); 

alertElement.Accept(); 

  

//Shut down Selenium 

WebDriver.Quit() 

 

Rapise provides full Intellisense and code-completion for the WebDriver global object: 

WebDriver Method Description 



 

 

Page 16 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

CreateFirefoxDriver Initializes a new instance of the Firefox WebDriver 

CreateInternetExplorerDriver Initializes a new instance of the Microsoft IE WebDriver 

CreateChromeDriver Initializes a new instance of the Google Chrome WebDriver 

CreateOperaDriver Initializes a new instance of the Opera WebDriver 

CreateSafariDriver Initializes a new instance of the Apple Safari WebDriver 

CreateDriver This will create a WebDriver for currently selected Browser profile 

GetUrl Gets the URL the browser is currently displaying 

SetUrl Sets the URL the browser is currently displaying 

GetCurrentWindowHandle 
Gets the current window handle, which is an opaque handle to this 
window that uniquely identifies it within this driver instance. 

GetPageSource Gets the source of the page last loaded by the browser. 

GetTitle ets the title of the current browser window. 

GetWindowHandles Gets the window handles of open browser windows. 

Quit Closes the Browser 

Close Close the Browser and Dispose of WebDriver 

Dispose Dispose of WebDriver 

ExecuteScript 
Executes JavaScript in the context of the currently selected frame or 
window 

FindElementByClassName Finds the first element in the page that matches the CSS Class supplied 

FindElementByCssSelector Finds the first element matching the specified CSS selector. 

FindElementById Finds the first element in the page that matches the ID supplied 

FindElementByLinkText Finds the first of elements that match the link text supplied 

FindElementByName Finds the first of elements that match the name supplied 

FindElementByPartialLinkText Finds the first of elements that match the part of the link text supplied 

FindElementByTagName Finds the first of elements that match the DOM Tag supplied 

FindElementByXPath Finds the first of elements that match the XPath supplied 

FindElementsByClassName Finds a list of elements that match the class name supplied 

FindElementsByCssSelector Finds all elements matching the specified CSS selector. 

FindElementsById Finds the first element in the page that matches the ID supplied 

FindElementsByLinkText Finds a list of elements that match the link text supplied 

FindElementsByName Finds a list of elements that match the name supplied 

FindElementsByPartialLinkText Finds a list of elements that match the part of the link text supplied 

FindElementsByTagName Finds a list of elements that match the DOM Tag supplied 

FindElementsByXPath Finds a list of elements that match the XPath supplied 

SwitchToAlert 
Switches to the currently active modal dialog for this particular driver 
instance. 

SwitchToFrame Move to different frame using its name 

SwitchToParentFrame Select the parent frame of the currently selected frame. 

SwitchToDefaultContent Change the active frame to the default 

 



 

 

Page 17 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

When you click ‘Play’ to playback your Selenium script, make sure you have selected one of the 

Selenium web browser profiles. If you have selected a native browser profile (e.g. “Firefox HTML” instead 

of “Selenium – Firefox”) you will get the error message “WebDriver” is not defined. 

When you are using functions such as FindElementsById() in your code, the returned object will be 

a Selenium Web Element. Such elements have a variety of supported functions: 

WebElement Method Description 

Submit Submits this element to the web server. 

SendKeys Simulates typing text into the element. 

GetCssValue Gets the value of a CSS property of this element. 

GetAttribute Gets the value of the specified attribute for this element. 

FindElementsByXPath 
Same as WebDriver Method except only looks for children 
of this element 

FindElementsByTagName 
Same as WebDriver Method except only looks for children 
of this element 

FindElementsByPartialLinkText 
Same as WebDriver Method except only looks for children 
of this element 

FindElementsByName 
Same as WebDriver Method except only looks for children 
of this element 

FindElementsByLinkText 
Same as WebDriver Method except only looks for children 
of this element 

FindElementsById 
Same as WebDriver Method except only looks for children 
of this element 

FindElementsByCssSelector 
Same as WebDriver Method except only looks for children 
of this element 

FindElementsByClassName 
Same as WebDriver Method except only looks for children 
of this element 

FindElementByXPath 
Same as WebDriver Method except only looks for children 
of this element 

FindElementByTagName 
Same as WebDriver Method except only looks for children 
of this element 

FindElementByPartialLinkText 
Same as WebDriver Method except only looks for children 
of this element 

FindElementByName 
Same as WebDriver Method except only looks for children 
of this element 

FindElementByLinkText 
Same as WebDriver Method except only looks for children 
of this element 

FindElementById 
Same as WebDriver Method except only looks for children 
of this element 

FindElementByCssSelector 
Same as WebDriver Method except only looks for children 
of this element 

FindElementByClassName 
Same as WebDriver Method except only looks for children 
of this element 



 

 

Page 18 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

ClickAt Clicks this element at the specified location 

Click Clicks this element. 

Clear Clears the content of this element. 

GetTagName Gets the tag name of this element. 

GetSize 
Gets a 'Size' object containing the height and width of this 
element. 

GetSelected 
Gets a value indicating whether or not this element is 
selected. 

GetLocation 
Gets a 'Point' object containing the coordinates of the 
upper-left corner of this element relative to the upper-left 
corner of the page. 

GetEnabled 
Gets a value indicating whether or not this element is 
enabled. 

GetDisplayed 
Gets a value indicating whether or not this element is 
displayed. 

GetCoordinates 
Gets a 'Point' object containing the coordinates of the 
upper-left corner of this element relative to the upper-left 
corner of the page. 

GetText 
Gets the innerText of this element, without any leading or 
trailing whitespace, and with other whitespace collapsed. 

 

If you want to have intellisense and code-completion for the returned WebElement objects, you need to 

do two things: 

• Click on CTRL+E to include the Rapise engine in your project. 

• Prefix the variable with /**WebElementWrapper*/, so instead of just: 

 

var el = WebDriver.FindElementById(…) you use: 

 

var /**WebElementWrapper*/el = WebDriver.FindElementById(…) instead 

 

For example: 

 



 

 

Page 19 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

3.2. Interoperability with Rapise Objects 

In addition to being able to use raw Selenium code on its own, you can also use a mixture of Rapise 

object-based code and raw Selenium WebDriver code. 

For example, you are using the standard Rapise approach (using learned SeS('object') objects) for 

testing but at some point want to switch to Selenium API to call a couple of WebElement functions on a 

learned object, you can use the special ‘element’ property: 

var webElement = SeS('MyObject').element; 

 

If you want to the reverse and be able to create a Rapise SeS('object') ‘on the fly’ from a physical 

object on the web page, you can do the MakeObjectForXPath(xpath) function that returns a Rapise 

SeSObject, in the same way that SeS(‘id’) does normally: 

var sesObj = MakeObjectForXPath("//body//div[@id='logArea']");  



 

 

Page 20 of 21 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information 

Legal Notices 

This publication is provided as is without warranty of any kind, either express or implied, including, but not 

limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. 

This publication could include technical inaccuracies or typographical errors. Changes are periodically 

added to the information contained herein; these changes will be incorporated in new editions of the 

publication. Inflectra Corporation may make improvements and/or changes in the product(s) and/or 

program(s) and/or service(s) described in this publication at any time. 

The sections in this guide that discuss internet web security are provided as suggestions and guidelines. 

Internet security is constantly evolving field, and our suggestions are no substitute for an up-to-date 

understanding of the vulnerabilities inherent in deploying internet or web applications, and Inflectra cannot 

be held liable for any losses due to breaches of security, compromise of data or other cyber-attacks that 

may result from following our recommendations. 

SpiraTest®, SpiraPlan®, SpiraTeam®, Rapise® and Inflectra® are registered trademarks of Inflectra 

Corporation in the United States of America and other countries. Microsoft®, Windows®, Explorer® and 

Microsoft Project® are registered trademarks of Microsoft Corporation. All other trademarks and product 

names are property of their respective holders. 

Please send comments and questions to: 

Technical Publications 

Inflectra Corporation 

8121 Georgia Ave, Suite 504 

Silver Spring, MD 20910-4957 

U.S.A. 

support@inflectra.com 

 

mailto:support@inflectra.com

