Rapise,

Rapise® Visual Language (RVL) User Guide

Version 5.2
Inflectra Corporation

Date: July 31st, 2017

inflectra”

Contents

Contents
About . . . L 1
Columns 5
Comments e e 7
Conditions L 7
Actions L 11
Variables e 14
Assertions L L L 17
If-Else o e e 18
Parameters e 20
Maps e 23
Loops e 30
RVLObject e e e e 31
Map Object e 32

About

Rapise,

RVL stands for Rapise Visual Language. It is inspired by well known software testing methodologies
Keyword Driven Testing and Data Driven Testing.

This section contains a review of current approaches and concepts to highlight the ideas behind RVL
design. You don’t need to read this section if you want to learn RVL. However you may need it if you
want to understand how it compares to other approaches and why we believe it is not just yet another
approach but the way forward to diminish struggling while building real live Ul Automation.

Keyword Driven Testing

Keywoard Driven Testing separates the documentation of test cases -including the data to use- from
the prescription of the way the test cases are executed. As a result it separates the test creation
process into two distinct stages: a design and development stage, and an execution stage.

<

o1
N
-

https://en.wikipedia.org/wiki/Keyword-driven_testing

Contents

A B C D

. First Name Last Name Age
Enter Patient John Smith 45
Enter Patient Sarah Connor 32

Keyword Driven Testing: Column A constains a Keyword, columns B, C, D provide parameters for a
Keyword.

Data Driven Testing

Data Driven Testing is the creation of test scripts to run together with their related data sets in a
framework. The framework provides re-usable test logic to reduce maintenance and improve test
coverage. Input and result (test criteria) data values can be stored in one or more central data sources
or databases, the actual format and organization can be implementation specific.

A B C
First Name Last Name Age
John Smith 45
Sarah Connor 32

Data Driven Testing: We have test input and expected output in data sources.

Gherkin / Cucumber
There are known approaches intended to make scripting more close to spoken languages.

This is a very wise approach improving test readability. The test case is described in Gherkin - busi-
ness readable, domain specific language. It describes behavior without detailing how that behavior is
implemented.

Essential part of this framework is implementation of Given-When-Then steps that should be done
with one of the common programming languages. Here is the place where the need in scriping skills
are still required.

Why RVL?

Initially Rapise has everything to build Data Driven and Keyword Driven test frameworks. Even without
RVL.

It is possible do define scenarios or keywords, connect to Spreadsheet or Database and build the test
set.

v5.2 2

https://en.wikipedia.org/wiki/Data-driven_testing
https://github.com/cucumber/cucumber/wiki/Gherkin

Contents

Framework based approaches require one to split data from test logic and maintain them separately.
So: * When AUT or SUT changes (new theme, new widget, new layout) then test logic is updated and
data stays the same * When test scenarios are enriched or updated then test logic is kept intact and
only data sheets are updated.

The reality of this approach leads to some challenges. These challenges are common for all test
frameworks mentioned here.

1. Design of test scripts require scripting and programming skills. That person is likely to be a
programmer.

2. Design of good test data requires knowledge in target domain. For example, if you application
is for Blood Bank then one should have some medical skills. If it is some device control app,
then you should have engeneering knowledge about physical limitations of the device.

So in ideal world there are two persons working as a team: Ul Automation scripting expert and target
domain specialist.

In reality we see that due to real life limitations it is common that all scripting and test data is done by
one person. It is either a programmer who gets familiar with target AUT domain or analyst who has
some scripting skills.

Reasons for struggling

There are several reasons that make a learning curve longer and adoption harder.
Syntax Sugar

We found a reason why people get stuck while trying to implement a test case.

Most of programming languages including JavaScript were designed by people with mathematical
background. So this statement appears clear and simple for a programmer:

Deposit ('John', 'O\'Connor', 17.99);

Programmer easily reads this as:

Deposit $17.99 to John O'Connor

So what is the difference between these notations? We found that the first and most important difficulty

lays in so called syntactical sugar. Symbols ' " ; , . () [1 { } & $ % # Qdo
have meaning for language notation however are not important for understainding the matter.

This is true even for programmers. When switching from similarly looking languages some differences
easily cause frustration. For example, the same construct:

v5.2 3

Contents

Sa = "Number " + 1;

Means text concatenation in JavaScript, however the same is mathematical operation in PHP.

Comparison like:
if(value == "OK")

Is good for JavaScript or C# world and leads £alse results in Java.

So even if we have programming skills it is still a problem to switch from one language to another and
may produce potential issues.

Data Tables

With Keywword Driven and Data Driven approach we get a table that represents a sequence. Se-
quence of patients to proceed, sequence of user logins etc.

And sometimes we feel the lack of common debugging facilities: - run keyword for only one line, - start
from specific row, - or stop before processing specific line.

So here we get to a point where the table should better be a part of the script rather than just external
data source.

State of The Art

RVL reflects a common trend in programming languages where computational power and flexibility
are sacrificed towards clarity and readability.

Some language is reduced to a reasonable subset in the sake of more concise and focused presenta-
tion. Just couple of examples.

Jade template engine simplifies writing HTML pages by clearing syntax sugar (< > / %)so HTML
code:

<body>
<p class="greeting">Hello, World!</p>
</body>

Gets reduced to more textual view:

body
p.greeting Hello, World!

Go language is promoted as Go is expressive, concise, clean, and efficient.. In fact its authors sacri-
ficed many advanced features of common programming languages (classes, inheritance, templates)
to get more clarity. This is extremely important because sophisticated features produce sophisticated
problems that are hard to nail down. And if you deal with high-load distributed systems minor gain
through use of unclear feature may lead to major unpredictable loss.

v5.2 4

http://learnjade.com/
https://golang.org/

Contents

RVL Concepts

RVL’s goal is to minimize the struggling.

. We assume that one should have minimal care about the syntax sugar and syntax rules. This
means that we must avoid braces, quotes or any special symbols ' " ,; , . () []
{ } & $ % # (@ andmake it possible to maintain the script without them.

We want script to be close to Keyword Driven and Data Driven testing concept. So test data and
test results should be representable as data tables. This reduces the struggling of attaching the
data feed to a test set.

3. We still want to have a solid language. We seek for a balance between clarity and power of

language. So we want the script to be implemented on the same language. Both keyword,
scenarios and data feeds should be done in a same way. This means one RVL skill is requried
for everything.

In many cases grids or tables are used to represent test data. So we want the script itself to be
a grid. So all parts of it includeing data tables are debuggable as a part of the solid script.

5. When we think about working with table data the most common format that comes to our mind

is XLS, XLSX or CSV. These formats are supported by powerful tools that make it easier to
prepare data for feeding into the test set. So RVL is itself an .xIs spreadsheet so its logic is
expressed right there.

6. Even with Spreadsheet there is a question what may be entered into the particular cell. With

RVL we have an editor where you start from left to right and each cell has limited number of
options. So if you don’t know language it will guide you.

Columns

RVL script is a spreadsheet containing set of 7 columns in fixed order:

RVL % o Mew

[== RSV R, N S U S

w0

10
11
12
132
14
15
16
17

Flowe Type Object Action ParamMame ParamType Paramialue H ™
Flow Type Object Artion Param Mame Param Type Param Walue
|Z| Glabal DolLaunch crndLine string calc

Param werkDir string .
Param attachlfExists boolean true
Param attachToWindow string Calculator
My scenario goes here
Action 1 DoLClick " number 13
Param ¥ number 15
Actian Add Dol Click ® number 21
Param ¥ number 19
Action _2 DoLClick E number 14
Param ¥ number 13
Action Equals DoLClick E number 12
Param ¥ number 23

Column View

» 1st Flow — Control flow. This column dedicated to specifying structural information such blocks,
Branches (If-Else), loops.

v5.2 5

Contents

Also it contains information about single row and multi row comments. Possible values are
limited by the list:

« \# or // - single row comment
« /* - begin of multi row comment (comment is valid up to line starting with * /)
+ */ -end of multi row comment started earlier from / *

« If -conditional branch. Row type must be Condition. The row may be followed with one
or more E1self statements, zero or one E1 se statement and then should end with End.

» 2nd Type - Type of operation specified in this row. One of:

« Action -row defines an action. Action is a call for operation for one of the objects. Object is
defined in the next column. See Actions.

+ Param - signals that this row contains action parameter or condition parameter defined in last
3 columns (ParamName, ParamType and ParamValue).

+ Qutput - this type of row must go after last Param for an action and defines a variable that
should accept output value retured from the call to the Action.

« Variable - this row defines or assigns value to a local or global variable. See Variables.
+ Assert - first row for the Assertion. See Assertions.
« Condition

» 3rd Object - Id of the object to be used for action. Rapise provides set of predefined global
objects and objects recorded/learned from the AUT.

 4th Action - One of the actions. DoAction, DoClick, GetText etc.
» 5th ParamName - see Params for more information on last 3 columns
» 6th ParamType

e 7th ParamValue

In addition to these columns there may be any number of other columns used for storing supplemen-
tary data, comments, calculations, thoughts etc. Additional columns may be utilized for script itself
(i.e. contain expected values or reference data).

v5.2 6

Contents

Comments

Single Row Comments
RVL has two types of single line comments depending on the purpose.

Sometimes comment is used to exclude line of code from execution.

Flow Type Object Action Paramiame ParamType Paramvalue H

2
3 s Acion «) Globat Dol aunch cmaline string calc.exe

There is a special type of single row comments intended to put long text comments into the document.

Single row comment is displayed as long text providing that: 1. Flow is set to # or // 2. Text is
completely typed into the Type cell. 3. Other cells after Type are empty.

In such case the text is displayed through the whole line:

goes here. We are going to perform anthmetical operation with Calcuiator,

12 p E_.EJ_l DolClick ® number 18
13 ¥ number 15
Multiple Row Comments
Used to disable several rows of script:
28
29
a0 Aszert Message string T80
31 Action s Glabal GetCurrentoir
32 Condition output IsTrue
33 Y
Conditions

Conditions used in I £ and Assert statements.

Types of Conditions

Condition accepts one or two Params.

1. There might be just one Param. Such condition is called unary, for example paraml is
trueoroutputl is true.

2. There might be second Param. Such condition is called binary, for example paraml ==
param?2.

3. Condition parameter may be either Param or Action output.

4. Param is some fixed value, variable or expression.

Binary condition with two Params named paraml and param?2:

v5.2 7

Contents

Type . Action ParamName
Param param1
Condition param1 == param?2

Param param2

Binary condition with Action and Param named outputl and param?:

Type Object Action ParamName
Action MyButton GetText
Condition output1 == param2
Param param2
Binary condition with two Actions named outputl and output?2:
Type Object Action ParamName
Action MyButton1 GetText
Condition outpu I= output2
Action MyButton2 GetText
Unary condition with Param paraml:
Type . Action ParamName
Param param1
Condition param1 IsFalse
Unary condition with Action outputl:
Type Object Action ParamName
Action MyButton GetEnabled
Condition output IsTrue
All Conditions

Unary conditions with Param

v5b5.2

Contents

Caption

Description

paraml IsTrue
paraml IsFalse
paraml IsNull
paraml IsNotNull
paraml IsSet
paraml IsNotSet

Check if paraml is true

Check if paraml is false

Check if paraml is null

Check if paraml is NOT null

Check if paraml is NOT null, false, 0, empty string or undefined
Check if paraml is null, 0, false, empty string or undefined

Unary conditions with Action

Caption

Description

outputl IsTrue
outputl IsFalse
outputl IsNull
outputl IsNotNull
outputl IsSet
outputl IsNotSet

Check if outputl is true

Check if outputl is false

Check if outputl is null

Check if outputl is NOT null

Check if outputl is NOT null, false, 0, empty string or undefined
Check if outputl is null, 0, false, empty string or undefined

Binary conditions with Params

Caption

Description

paraml ==param?2
paraml !=param?2
paraml > param?
paraml >=param?
paraml <= param?2
paraml < param?

Check if paraml equals to param?

Check if paraml NOT equal to param?
Check if paraml is more than param?2
Check if paraml is more or equal to param?
Check if paraml is less or equal to param?
Check if paraml is less than param?

paraml contains param? Check if paraml contains param?2 as substring
Cmplmage paraml, param? Compare 1st image and image represented by param?

Binary conditions with Action and Param

Caption

Description

outputl == param?2
outputl |=param?2
outputl >param?2

outputl >=param?2
outputl <=param?2

v5b5.2

Check if outputl equals to param?2

Check if outputl NOT equal to param?2
Check if outputl is more than param?
Check if outputl is more or equal to param?2
Check if outputl is less or equal to param?2

Contents

Caption

Description

outputl <param?2
outputl contains param?2
Cmplmage outputl, param?2

Check if outputl is less than param?
Check if outputl contains param? as substring
Compare 1st image and image represented by param?

Binary conditions with Actions

Caption

Description

outputl == output?2
outputl = output?2
outputl >output?
outputl >=output?
outputl <=output?2
outputl <output?
outputl contains output?2

Cmplmage outputl, output?2

Check if outputl equals to output?

Check if outputl NOT equal to output?2

Check if outputl is more than output?2

Check if outputl is more or equal to output?
Check if outputl is less or equal to output?2

Check if outputl is less than output?2

Check if outputl contains output?2 as substring
Compare 1st image and image represented by output?2

And, Or Conditions

It is possible to make more complex conditions by using And and Or keyword in the Flow column.

Flow Type Action ParamName ParamType ParamValue

If Param param1 variable Resultl
Condition param1 IsFalse

And Param param1 variable Result?2
Condition param1 IsTrue

This pice forms a condition checking that Resultl is false AND Result?2 is true at the same

time.
Flow Type Object Action ParamName ParamType ParamValue
If Action MyButton GetEnabled
Condition output1 IsFalse
Or Param param1 variable Resultl
Condition param1 IsTrue
v5.2 10

Contents

This pice forms a condition checking that MyButton is Enabled OR Result?2 is true at the same

time.

Examples

Condition is never used alone. You may find examples of conditions in chapters devoted to Assertions

and If-Then-Else.

Actions

In RVL Action always refers to an operation performed with object.

Flow Type Object Action ParamName ParamType ParamValue
Action MyButton DoClick X number 5
Param y number 7

If row type is Act ion then there must be Object and Action cells defined.

Note: In this example we call an operation that would look in JavaScript as follows:

SeS('MyButton') .DoClick(5,7);

Object is an ID of learned or Global object. Available objects may be found in the Object

Tree:

v5b5.2

11

Contents

Object Tree
S id n idH
4 | Object Tree C:AUsers\alex\Document
4 [Calculator

[,EJ _1[1]
[,_EJ _2[2] 1
B ,_EJ Add [Add]
[,EJ Equalz [Equalz]
b 5 Result [Resul]
4 [Global
3 Android [Android]
i Databaze [Databaze]
é] File [File]
%) Global [Global]
L5 05 [i0s]
&) Navigator [Mavigator]
f Meaload [Mealaoad]
Q Der [Der)
23 Session [Session]
I_ﬁlj Spreadzheet [Spreadzhest]
A Tester [Tester]
L—ﬁ WwhebDinver [w'ebli
by User Functions
Yoar UzerWariables

A A - A A - A — .

Object tree contains list of available objects, including: 1. Local objects (1) learned recorded or learned
from the application under test. 2. Global object. Always available set of objects containing most
common utility functions and operations. 3. Functions. Represent global JavaScript functions. Each
time you define a global function in .user.js file it becomes available for calling from RVL with special
object ID Functions.

PR User Functions i 35 Action {hy Functions MyFunction strl string

{} MyFunction 36 » Param P [+] b2 boolean false
=7 () MylserFunction 37 g Param n3 number o

Each Object has its own set of actions. You may also see them in the object tree:

a ,_EJ Add [Add]

g Dodction
Do nalogPlay
DoChck,
Dolumptafidget
Dok naureisible
Dol ButtonD own
DolButtonlp
DolClick,
DoLDClick,

CCC OO L

v5.2 12

Contents

An Action may have any number of parameters. See Params for more info.

Editing Action

An Action may have both mandatory and optional params. When action is selected from the dropdown
its params are displayed:

39 b5 Action =) Glabal Lt JDofnalogPlay E
40 Image Caption -
gl @ DoKilleyPid

S DoLaunch
43 & Dl nzdfhiaste
4d Executes a command specified in cmdline, Optionall " efe may specify warking dir, and window name to attach if it is already launched,

—

45 @param [vwrkDir] Working direckory For the new process.
46 @parar [attachIfExists] Try to find existing process before starting new one. If no process found then new one is created.
@param [attachTowindow] when attachIFExists is true this parameter may be used to specify top window name to find a process ko attach to, When attachment is successfull cmdling is not executed,
47 @returns 10 of the new process,
48

DoLaunchi**String®} cdLine, f**String®| wekDir, F*Boclean™/attachIfExists, f**String™®fattachTowindow)

By default RVL editor pre-fills only mandatory params for you when you select an action from the
dropdown. In this example DoLaunch has one mandatory parameter cmdLine so here is what
you get when you select it:

L] Action +; Global DoLaunch crdLine string

40 » [~]

41
42

However the situation is differs if you hold the Shift key while choosing an Action from the dropdown:

30 Action = Global DaLaunch crndLine string

40 vy Param | |z| wrkDir string .

41 F Param gttachIfExists hoolean false
42 5 Param attachTowindow string null

You may see that all parameters are applied in this case.

» Note: if you you already have have the same action and select it with Shift key again, no
optional params are applied. You need to clean the Action cell and re-select it with Shift if you
want to achieve the desired effect.

Examples

Click on Horme

Action without parameters “™°" 4 Home Doclick

Action with single parameter. In RVL each parameter takes one line with Action=Param. How-

ever for the 1st param there is an exception. It may occupy the same line as Action itself:
Set Text lbravian in Username!

Action abl| Lsername_ DoSetText twt string librarian
30 Action -} Global DolLaunch cmdLine string
40 vy Param | E wrkDir string .
41 F Param attachIfExists boolean false
. . . 42 F Param attachToWindow string null
Action with many parameters: | -

v5.2 13

Contents

Variables

In RVL, variables are useful for storing intermediate results as well as accessing and passing global
values to external JavaScript functions.

Variables may be used in Params to Conditions and in Actions.

Declaring and Assigning

This line declares a variable without any values. Its value may be assigned later:

Flow Type Object Action ParamName ParamType ParamValue

Variable MyVarl

This line declares and assigns value 5 to a variable MyVar2:

Flow Type Object Action ParamName ParamType ParamValue

Variable MyVar?2 number 5

If the variable is declared earlier, then assignment just changes its value. If the variable is not yet
declared, then assignment is actually a declaration with assignment.

Using

Any Params value may accept a variable:

Type .- ParamName ParamType ParamValue

Param text variable MyVarl

Any Params value may accept an expression using variables:

Type ParamName ParamType ParamValue

Param text expression MyVarz2 + 4

Any Action may write its return value to a variable using the Output statement:

Flow Type Object Action ParamName ParamType ParamValue
Action Global DoTrim str string text to trim
Output variable MyVarl

v5.2 14

Contents

The Output value may then be used as a param value in actions, conditions, assertions and expres-
sions.

Local Variables

By default declared variables are assumed to be local. Local variables may be used only within the
current RVL script and not visible from other RVL scripts or JavaScript code.

Global Variables

You may have a JavaScript variable defined in the user Functions file (* . user. js),i.e.

var globalVar = "Value'";

Then in the RVL you may declare globalVar as global and access it (read or assign values).
Declaring a variable as global is simple:

Flow Type Object Action ParamName ParamType ParamValue

Variable Global globalVar

Global variables are useful for exchanging and/or sharing data between different RVL scripts or be-
tween RVL and JavaScript.

Variable Actions

One may use an expression to change the value of a variable. Here are several common variable
operations that may be used to modify variable values:

1. Increment is an operation where numeric value is increased by 1 or any other specified value.
The variable must have a numeric value. Otherwise the result is NaN.

If no param to Increment is specified then 1 is assumed:

Flow Type Object Action ParamName ParamType ParamValue

Variable Increment numVar

Otherwise it is any value:

v5.2 15

Contents

Flow Type Object Action ParamName ParamType

ParamValue

Variable Increment numVar number

value

2. Decrement is the same as increment but the value is subtracted from the variable.

3. Append adds the value as text to the specified variable. This operation is useful for constructing

text messages:

Flow Type Object Action ParamName ParamType ParamValue
Variable Append textVar string Final value:
Variable Append textVar variable numVar

In this example if textVar was empty and numVaxr had value 5 then the final value of textVar

is the following text: Final value: 5

Examples

Variables may be declared as Local or Global. Declaration may or may not contain initial value

Declare global variables, If It is assighed earlier then keep lts value

wariable Global g_bookMName

Declare global variable and assign its value

wariahle Global g_genre string
Declare local variable witout vaiue

Wariable Local Qsversion

Declare local variables and assign Initial values

wariahle Local Stringvar string
Yariable Local Murntar number
Wariable Local Boolvar boolean

Variables may accept output from the Action:

Declare focal varizbie witout value

Wariable Local Dsversion
Action «; Global GetDsversion

Qutput variable

Variables may be used as input to the Action:

Use variable as 3 parameter
Action A Tester Message message variable

v5b5.2

MonFiction

some text
35
false

Dsversion

OsWersion

16

Contents

Assertions

Assert is an essential operation for testing and validation. RVL provides special structure for it to make

it more readable.

Assertion has 2 parts: 1st row is Assert containing assertion message and then goes Condition:

Type Action ParamName

Assert message string
Param param1

Condition condition statement

Param param2

Assertion first line is always the same except the Param Value.

In RVL Action always refers to an operation performed with object.

Type Object Action ParamNamd&’aramType ParamValue
Assert message string Assertion text to be
displayed in the report
Param param1 string Text1
Condition param1!=param2
Param param2 string Text2
Examples
Compare object property InnerText with expected value:
Verify that: InnherText=Sister Carrle
Assert message string werify that: InnerText=Sister Carrie
Action O Sister_Carrie GetlnnerText
Condition outputl == paramsz
Param paramz string Sister Carrie
Check if object exists on the screen:
Check that object Sister_Carrie’ exists
Assert message string Check that object 'Sister_Carrie’ exists
Action - Global Dol aitFor objectld objectid Sister_Carrie
Condition outputl IsSet
Check if variable Age has value ‘74’
Check that variable Age containg value 747
Assert message string Check that Age=74
Param paraml variable Age
Condition paraml == param2
Param paramz string 74
v5.2

17

Contents

If-Else

I £ using for branching statements in RVL.

Basic branch statement has 2 parts: 1st row is I £ flow with Condition:

If
Flow Type .- Action ParamName
If Param param1
Condition condition statement
Param param2
some actions go here
End

Actions after I £ condition and up to End statement are executed when condition is truth.

If-Else

If-E1lse statement is similar to I £ with one extension. It contains an alternative E1 se section
that is executed when I £ condition is false:

Flow Type .- Action ParamName

If Param param1
Condition condition statement
Param param2
some actions go here

Else
other actions go here

End

If-Elself

ElseIf is a way to establish a chain of conditions. Each condition is evaluated with previous is
false.

If-E1lse statement is similar to I £ with one extension. It contains an alternative E1 se section
that is executed when I £ condition is false:

Flow Type e Action ParamName
If Param param1
Condition condition statement

v5.2 18

Contents

Flow Type Action ParamName
Param param?2
some actions go here

Elself Param param1
Condition condition statement
Param param?2
other actions go here

End

There may be many Elself blocks:

Flow Type Action ParamName

If Param param1
Condition condition statement
Param param2
some actions go here

Elself Param param1
Condition condition statement
Param param?2
other actions go here

Elself Param param1
Condition condition statement
Param param?2
other actions go here

End

And there might also be an E1 se block in the end:

Flow Type Action ParamName

If Param param1
Condition condition statement
Param param?2
some actions go here

Elself Param param1
Condition condition statement
Param param2
other actions go here

Elself Param param1
Condition condition statement
Param param?2

v5.2

19

Contents

Flow Type e Action ParamName
other actions go here
Else
other actions go here
End
Examples

Check if Log In link available. If so, do login:

If Action «; Global Do\ aitFor ohjectld ohjectid Log_In
Condition outputl IsSet

If actions
Action Log_In DoClick
Action Username_ DoSetText fut string librarian
Action Password_ DoSetText it string librarian
Action cHo0EMainContenttloginUsertlogi DoClick

End

Check if we use old version of OS and assign a variable O1dWindows accordingly:

Variable Local Oldwindows
1f Action «; Global GetOsType

Condition outputl contains paramz

Param paramsz string Windows 7
If actions

‘ariable OldwWindows boolean true
Else
Elge actions

Variable CldwWindows boolean false
End
Parameters

The last 3 columns in the RVL table are used for passing parameters:

ParamName ParamType ParamValue
text string John Smith
X number 5

y number 7
forceEvent boolean true

* 5th column - ParamName - name of the parameter. This column’s intention is readability and
it does not affect execution. However it names input parameters and makes it easier to under-
stand each provided input option.

v5.2 20

Contents

« 6th column - ParamType - value type. This may be a basic scalar type (number, string,
boolean, object) as well as one of the following additionals ‘special’ types:

. — expression -any valid JavaScript expression that may involve global variables and
functions and local variables.

. — variable - the parameter value is read from a variable.

. — objectid - ID of one of the learned Objects.

7th column - ParamValue - a value that is acceptable for the specified ParamType. For
booleanitis true or false. For number is is any floating point number (i.e. 3.14).
For st ring, any text without quotes or escape signs.

Param Rows

In RVL each parameter takes one row:

Type . ParamName ParamType ParamValue
Param text string John Smith
Param X number 5

Param y number 7

Param forceEvent boolean true

Param Arrays

Some methods accept arrays of values as input values. For example Tester .Message may
take its 1st message parameter as an array and prints them combined. Making an array is easy,
several consequent parameters having the same name are combined into an array, i.e.:

Flow Type Object Action ParamName ParamType ParamValue
Action Tester Message message string MyVar1
value:
Param message variable MyVar1
Param message string MyVar2
value:
Param message variable MyVar2

Should report a message like:

MyVarl value: 25 MyVar2 value: 33

v5.2 21

Contents

Mixed Rows
In some cases it is convenient to mix parameter cells with an Action or Condition.

For example, the 1st parameter of an Action may share the Action row:

Flow Type Object Action ParamName ParamType ParamValue
Action MyButton DoClick X number 5
Param y number 7
And this is equivalent to putting it in the next row:
Flow Type Object Action ParamName ParamType ParamValue
Action MyButton DoClick
Param X number 5
Param y number 7
Or param? of the condition may be on the same row:
Type Object Action ParamName ParamType ParamValue
Param param1 string Text1
Condition param1!=paramZparam2 string Text2
Which is equivalent to:
Type Object Action ParamName ParamType ParamValue
Param param1 string Text1
Condition param1!=param2
Param param2 string Text2

This allows saving space while keeping same readability.

Map Params

If map is defined in the script it may be used directly as a parameter. ParamType should be set to Map

Name and ParamValue is a column (or row) name:

v5b5.2

22

Contents

Flow Type Object Action ParamName ParamType ParamValue

Map Rows Logins

Login Password

John passl

Sarah pass2
End

Action A Tester Message message Logins “ Password
Maps

A Map is designed to be an easy way to define tables of data. Items in the map may be accessed by
name (if defined) or by index.

The indexed dimensions in the map may also be iterated by the [Loop][Loops.md] function, thus making
it useful feature for Data-Driven Testing.

Flow Type Object Action
Map Rows Logins
Login Password
John passl
Sarah pass2
End

An RVL script has at least 7 columns. However the Map may take as many columns as needed.

Map Definition

Typical declaration of map looks like:

Flow Type Object Action ParamName ParamType ParamValue
Map MapTypeMapName
End

Where MapType is either inplace: Table, Rows, Columns, or external: Range or Database.

In-place maps

In-place map data is defined right in the RVL script. In-place map rows may be selected using This
flow or skipped with a Comment. So in-place maps serve as a part of the executable script.

v5.2 23

Contents

» Table
* Rows
e Columns

External maps:

* Range
» Database

External maps are defined in an external spreadsheet, file or a database.

Using Maps
Once map is defined it may be used as a regular Object.
Map Rows Logins
Login Password
John passl
Sarah pass2
End
Action Logins o v

<

DoMoveToColumn
DoMoveToFirstColumn
DoMoveToFirstRow
DoMoveTolastColumn
DoMoveTolLastRow
DoMoveToRow
DoSequential

GetCell

<

<

<

<

<

<

<

Reading in a Loop

See Loops part for Map type of loops.

Maps Types

Rows Map

A Rows Map is the most useful for data feeds. Each of the set of values is a row in a table that look

like:

v5b5.2

24

Loops.md:Map

Contents

Flow Type Object Action ParamName ParamType ParamValue
Map Rows MapName

Col1 Col2 Col3 Col4

val11 val12 val13 val14
End

This and comments are specific features of the Rows Map. For example, only the 2nd row of data

will be executed in this case:

Flow Type Object Action ParamName ParamType ParamValue
Map Rows MapName
Col1 Col2 Col3 Col4
This
End
Rows are designed to be iterated in a Loop
In real example it looks like this:
Map Rows MyMap1l
Login Password
John testpass
Sarah testpass
This Jim testpass
Peter testpass
John testpass
Fred testpass
End
v5.2 25

Contents

Comments may also be used to skip specific rows or row sets.

Columns Map

A Columns Map is a convenient way for representing data when you have many options combined
in few sets.

Flow Type Object Action ParamName ParamType ParamValue
Map Columns MapName

Row1

Row2

Row3
End

The same may be represented as Rows but would require many columns and sometimes it is harder
to read. So columns is ideal for storing configuration structures:

Map Columns ConfigData
Url http://localhost: 8080/
Login testuser
Password testpass
Age 44
End

When a Columns Map is used in the Loop, then the iteration is performed through the columns and
addresses the rows by name within the loop. l.e. the 1st iteration chooses 1st column, 2nd goes to
2nd column and so on.

Table Map

A Table map has both columns and rows named.

Flow Type Object Action ParamName ParamType ParamValue
Map Table MapName
Col1 Col2 Col3 Col4
Row1
Row2

v5.2 26

Contents

Flow Type Object Action ParamName ParamType ParamValue
Row3
End
Map Table TableMap
Staging QA Prod
url http://staging.myho... http://qa.myhost.co... http://myhost.com/
User test qatest john
Password pass pass QAasd*&983
Age 33 33 33
End

When a Table Map is used in the Loop, then the iteration is performed through the columns and
addresses the rows by name within the loop. l.e. 1st iteration chooses 1st column, 2nd goes to 2nd
column and so on.

It is convenient to use a Talb1e Map when you have several columns and many rows so it perfectly
fits into the screen. For example you may have several alternative configuration sections and want to
use them depending on the situation. In the example below we have several sites (Testing, QA, Prod)
each having own Url, Login etc. So we want to quickly switch between sites when working with test.

Map Table TableMap >
- \ N
Staging QA ’/ﬁd '

url http://staging.myho... Ihttp://qa.myhost.co... |http://myhost.com/

User test gatest john

Password pass pass QAasd*8983

Age 33 33 33
End .

]

Action TableMap DoMoveToColumn collnd string QA

Action o Navigator Navigate url TableMap 2w Url
Range Map

Range map contains no in-place data, but defines a region in the external spreadsheet to read
information from.

Map Range MyMap1l fileName string Calc.xls
Param sheetName string Data$
Param fromRow number 0
Param fromCol number 0
Param toRow number 2
Param toCol number 10

End

A Range map definition contains a number of required parameters:

v5.2 27

Contents

+ fileName Path to file containing data. It may point to .xls, .xIsx or .csv file. If when it is empty
we assume that data is stored in the same .rvl.xls spreadsheet as the script.

» sheetName Excel Sheet name. May be empty for .csv spreadsheets.

» fromRow 0-based index of the first row containing data. Usually first row is assigned as a header
containing column names.

» fromCol 0-based index of the first column containing data.

» toRow final row index. If set to -1 then final row is detected automatically (as last row containing
some data in the 1st column)

+ toCol final column index. If set to -1 then final column is detected automatically as last column
containing data in the 1st row.

Also there is a hidden parameter:

» hasColumnNames boolean. By default it is t rue meaning that 1st rows is assumed to contain
column names. Once itis fa 1l se the columns will have no names and may only be accessed
by 0-based index.

Data in the Range map is assumed to be similar to Rows map, but defined externally. Looping is
done by rows. Typical external file containing data may look like that:

A B C D
1 Ilteml Operation Item2 Result
2 15 + 13 28
3 5 * 6 30
4 191- 3 16
5 8/ 4 2

Database Map

A Database map contains no in-place data, but defines a connection to the database result set.

Map Database MyMap1 connectionString string MYSQL1
Param query string select * from contacts
End

The Database map definition contains two parameters:

» connectionString ADO connection string.

v5.2 28

Contents

» query usually it is an SQL query to execute.

connectionString parameter allows accessing wide variety of different database sources. You may
learn ore here: https://docs.microsoft.com/en-us/sql/ado/reference/ado-api/connectionstring-property-ado.

Some samples of typical ADO connection string values:

Microsoft Access

Provider=MSDASQL; Driver={Microsoft Access Driver (*.mdb)}; DBQ=C:\path\
Microsoft Excel

Provider=MSDASQL; Driver={Microsoft Excel Driver (*.xls)}; DBQ=C:\path\f
Microsoft Text

Provider=MSDASQL; Driver={Microsoft Text Driver (*.txt; *.csv)}; DBQ=C:\

An example below refers to ODBC Data Source defined as follows:
@ ODBC Data Source Administrator (32-bit)

User DSN | System DSM | File DSN | Drivers | Tracing | Connection Pooling | About

System Data Sources:

Mame Platform Driver Add...
MYSQLT s MySQL ODBC 5.1 Driver
Remove
Configure...

An ODBC System data source stores information about how to connect to the indicated data provider.
A System data source is visible to all users of this computer, including NT services.

QK Cancel Applhy Help

v5.2 29

https://docs.microsoft.com/en-us/sql/ado/reference/ado-api/connectionstring-property-ado

Contents

Loops

Loops serve several needs in RVL:

1. Iterate through Maps to make data-driven testing easier.
2. Allows you to repeat a set of actions for a given number of iterations.
3. Lets you repeat a loop body while some Condition is satisfied.

Loop Map

A Map allows both reading script data from the table defined in the same script or from external data
source such as spreadsheet, file or database. Once a Map is defined, the loop is the simplest way of
traversing it.

Flow Type Object Action ParamName ParamType ParamValue
Loop Map MapName
End

Where MapName should be name of the map declared earlier in the same script.

The loop goes through either the map rows or through the map columns depending on the type of
map:

* ForRows, Range or Database type of Map, the loop goes through rows. l.e. 1stiteration
points to 1st Row, then 2nd iteration points to 2nd row etc.
* For Columns and Talb1e types of Map, the iteration goes through the columns.

Loop Variable

Flow Type Object Action ParamName ParamType ParamValue

Loop Variable ind from number 1
Param to number 10

- Loop body
End

Flow Type Object Action ParamName ParamType ParamValue

Loop Variable VarName from number 1

Param to number 10

v5.2 30

Contents

Flow Type Object Action ParamName ParamType ParamValue

End

Where:

» VarName is an optional name of variable. It may be avoided if the goal is just to do specified
number of iterations. If VarName is set, then the corresponding variable is assigned with the
f rom value and incremented up to the £ o value throughout the loop. If VarName refers to an
existing local or global variable then it is used, otherwise a local variable named VarName is
created.

* from initial value of the loop variable
» to final value of the loop variable

+ step optional, default is 1. Loop step to increment in each iteration.

Loop Condition

Loop Param param1l variable ind
Condition paraml < param?2
Param param2 number 2
Loop body
End

Loop repeats while condition is satisfied (i.e. while (someCondition)).

RVL Object

RVL Object

Some common tasks related to script execution, such as calling scripts, executing separate sheets,
returning, exiting and bailing out is served by RVL.

Actions

DoPlayScript
DoPlayScript (/**String*/scriptPath, /**String*/sheetName)
Play RVL script using specified

« scriptPath{/**string*/}: Path to script

« sheetName {/**string*/}: Excel sheet containing the script

v5.2 31

Contents

Exit
Exit(/**String*/ message, /**Boolean*/isError)

Break execution at the specified line

« message {/**string*/}: Exit message

« isError {/**boolean*/}: Specify ‘false’ if you want just exit without exit message

Return
Return (/**String*/ message)

Return from specified line. This method should be called from within RVL

« message {/**string*/}. Return message

DoPlaySheet
DoPlaySheet (/**String*/sheetName)

Run current script from specified sheet

« sheetName {/**string*/}: Sheet Name

Properties

CurrentScriptPath
*GetCurrentScriptPath() **

Return path to currently executed .rvl.xls file

CurrentScriptSheet
* GetCurrentScriptSheet () **

Return sheet name of the currently executed .rvl.xls file

Map Object

Map Object

Represents an RVL Map object and all its operations. The same operations are used by the RVL
runtime implicitly to read the cell value or iterate through the Map.

v5.2 32

Contents

Actions

DoMoveToRow
DoMoveToRow (/**Number*/ colInd)
Moves to a given row.

rowInd Row index (or name) to set active.

DoSequential
DoSequential ()

Advances to the next row in the range. The range is either set by SetRange or it is the default range
thatincludes all rows on the sheet except first row which is considered to contain column names. When
the end of the range is reached, DoSequential rewinds back to the first row in the range and returns
‘false’.

Returns ‘false’ if being called when active row is the last row or the spreadsheet is not attached, ‘true’
- otherwise.

DoMoveToColumn
DoMoveToColumn (/**Number | String*/colInd)
Moves to a given column.

colInd Column index (or name) to set active.

DoMoveToFirstColumn
DoMoveToFirstColumn ()

Moves to a first column in the map.

DoMoveToFirstRow
DoMoveToFirstRow ()

Moves to a first row in the map.

DoMoveTolLastColumn
DoMoveToLastColumn ()

Moves to a last column in the map.

v5.2 33

Contents

DoMoveTolLastRow
DoMoveToLastRow ()

Moves to a last row in the map.

Properties

Cell
* GetCell (/**Number|String*/ columnId, /**Number*/ rowId) **

Gets a cell value by its coordinates. It returns the current cell value after DoSequental or DoRandom
if the parameters are not set.

[columnId] Column index or name. If not set ActiveColumn is used.

[rowId] Row index. If not set ActiveRow is used.

ColumnCell
** GetColumnCell (/**Number*/ rowId) **

Gets cell value by its coordinates. Returns current cell value after DoSequental. If not set ActiveCol-
umn is used.

[rowId] Row index. If not set ActiveRow is used.

ColumnCount
*GetColumnCount () **
Gets columns count.

Returns Number of columns in the spreadsheet.

ColumnindexByName

* GetColumnIndexByName (/**String*/name) **
Gets column name.

name Column name.

Returns column index if found, or -1.

v5.2 34

Contents

ColumnName

** GetColumnName (/**Number*/ ind) **
Gets column name.

ind Column index.

Returns Name of column in the spreadsheet.

RowCount
** GetRowCount () **
Gets rows count.

Returns Number of rows in the spreadsheet.

RowIndexByName

* GetRowIndexByName (/**String*/name) **
Gets row name.

name Row name.

Returns row index if found, or -1.

CurrentRowlIndex
* GetCurrentRowIndex () **

Get zero based current row index.

EOF
* GetEOF () **

Is current position is beyond the map boundaries range.

RowCell
* GetRowCell (/**Number|String*/ columnId) **
Gets cell value for current row. Returns current cell value after DoSequental. ActiveRow is used.

[columnId] Column index or name. If not set ActiveColumn is used.

v5.2 35

Contents

RowName

** GetRowName (/**Number*/ ind) **
Gets row name.

ind Row index.

Returns Name of row in the map.

Value
* GetValue (/**Number |String*/ rowOrColumnNameOrId) **

Gets cell value by its name or id. Returns current cell value after DoSequental. If it is Rows or Table
then the parameter needs to be a column name or index, and ActiveRow is used. If it is Columns then
the parameter needs to be a row name or index, and ActiveRow is used.

[rowOrColumnNameOrId] Row or Column index or Name.

v5.2 36

Legal Notices

This publication is provided as is without warranty of any kind, either express or implied, including, but not
limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
added to the information contained herein; these changes will be incorporated in new editions of the
publication. Inflectra Corporation may make improvements and/or changes in the product(s) and/or
program(s) and/or service(s) described in this publication at any time.

The sections in this guide that discuss internet web security are provided as suggestions and guidelines.
Internet security is constantly evolving field, and our suggestions are no substitute for an up-to-date
understanding of the vulnerabilities inherent in deploying internet or web applications, and Inflectra cannot
be held liable for any losses due to breaches of security, compromise of data or other cyber-attacks that
may result from following our recommendations.

Rapise® and Inflectra® are either trademarks or registered trademarks of Inflectra Corporation in the
United States of America and other countries. All other trademarks and product names are property of
their respective holders.

Please send comments and questions to:
Technical Publications
Inflectra Corporation
8121 Georgia Ave, Suite 504
Silver Spring, MD 20910-4957
U.S.A.

support@inflectra.com

mailto:support@inflectra.com

	rvl_5.2.pdf
	About
	Columns
	Comments
	Conditions
	Actions
	Variables
	Assertions
	If-Else
	Parameters
	Maps
	Loops
	RVL Object
	Map Object

