Rapise® User Guide

Version 2.1
Inflectra Corporation

Date: September 16th, 2014

inflectra”

About this Guide Top Previous Next

The Rapise User's Guide is divided into four sections: Getting Started; Features; Dialogs, Views, and Menus; HowTos.

Getting Started
The Getting Started section is for new Rapise users. It has the following subsections:

(1) An Overview of Rapise: what it's for and how to use it.

(2) Test Samples, where the sample projects included with Rapise are described.

(3) TwoDialogs Sample, a step-by-step tutorial for creating your first test with Rapise

(4) Tutorial: Record and Playback, a slightly more advanced tutorial in using Rapise to test a web page.
(5) Tutorial: Testing REST Web Services, a tutorial in using Rapise to test a RESTful web service API.

Features
The features of Rapise are many. Features have been designed to make all aspects of test automation as easy as possible.

Most of the features of Rapise fall into one of five categories:

(1) Building test scripts with little or no manual scripting.

(2) Reading and interpreting results and reports.

(3) Additional features and capabilities for sophisticated testing.

(4) Writing more involved or complicated tests using scripting.

(5) Extending Rapise to learn new or extended libraries of capabilities.

Depending on the application set being tested, not all of these features are necessarily needed for every situation.

For each feature, this document attempts to present:

(1) The reason you might use a given feature.

(2) A summary of the basic value of the feature.

(3) An overview of how the feature works from the perspective of using it.
(4) At least one useful sample that demonstrates how to use the feature.

Dialogs, Views, and Menus

This section details the Rapise GUI. Each subsection describes the function of a particular Dialog, View, or Menu. The purpose and consequences of all buttons, options, lists, and check boxes are
listed.

HowTos
This section focuses on specific tasks that a Rapise user might want to accomplish.

Glossary Top Previous Next

This glossary presents a list of terms and their definitions as they are used in this guide.

API - Application Programming Interface
AUT - Application Under Test

DOM - Document Object Model

GUI - Graphical User Interface

GWT - Google Web Toolkit

IDE - Integrated Development Environment
JSON - JavaScript Object Notation
REST - REpresentation State Transfer
SOAP - Simple Object Access Protocol
Ul - User Interface

XML - eXtensible Markup Language
YUI - Yahoo! User Interface (library)

Getting Started Top Previous Next

The Getting Started section is for new Rapise users. It has the following subsections:

1) An Overview of Rapise: what it's for and how to use it.

2) Test Samples, where the sample projects included with Rapise are described.

3) TwoDialogs Sample, a step-by-step tutorial for creating your first test with Rapise

4) Tutorial: Record and Playback, a slightly more advanced tutorial in using Rapise to test a web page.

5) Tutorial: Testing Adobe Flex Applications, a slightly more advanced tutorial in using Rapise to test an Adobe Flex/Flash/AIR application.
6) Tutorial: Testing REST Web Services, a tutorial in using Rapise to test a RESTful web service API.

(
(
(
(
(
(

Overview Top Previous Next

Rapise was created to make software testing easy and manageable without being prohibitively expensive.

Rapise was made easy for software test professionals, developers and professionals concerned with quality assurance to simply and quickly write a test to cover an application, a web page, or a single
bug to prevent regression.

Consider for a moment what it is you do to test your software today. Most likely it has some for of user interface (Ul), probably a graphic user interface (GUI). So you will run the application , click
around, perhaps in some way that gives you complete coverage of all the features (but probably not if it's a large application or web). Then you will login, if appropriate, and you will fetch some data and
modify some data, test some more controls - edit boxes, buttons, drop-down lists, links, etc. If you have just fixed a bug then you will focus on the area of the application where the bug occurred. You
will enter data that causes the bug, or go through the control sequence that causes the bug.

9/16/2014 Page 1 of 105

Next time you come to fix a bug in this application, you will do the same thing again.. Once again, you will focus on the area where the bug was.

Rapise presents you with two methods for capturing specific tests, and it will keep the test as a solo test or as part of a suite of tests that help you to qualify the application for release or a more formal
QA process. Rapise is designed to allow the developer or the test professional to add new tests quickly and so to build up a library of tests.

There are two methods for capturing tests:

o Record and playback. In this type of test creation, you turn on the recorder and perform the actions needed to execute the test. Each test is saved to its own directory. A test consists of a javascript
test script (,js), a meta-data file (*.sstest), and any number of additional supplementary scripts and data files. The test script is automatically generated after recording; simple modifications are
required to make the test data driven. Checkpoints can be added during recording, or manually into the script.

« Object-driven learning. Rapise considers each item on the page or within the application window to be an object. Examples are buttons, edit boxes, links, etc. To create a test using this technique,
you have Rapise "learn" each control, and it will keep a miniature database of all the controls you "teach" it. To create a test, you write a script to instruct Rapise to perform a particular action on each
object in the prescribed order. As any point along the way, the script you write can instruct Rapise to look inside an object and read its data and compare that value or content with what you expect it o
be.

There are many methodologies with their own recommended approaches for designing testing strategies to ensure that application coverage is complete and meets the business requirements
specification of the work being accomplished. Inflectra in general, recommends that you create a new test for each software requirement (to track progress) and for each issue in your issue tracking
system (to test for regressions).

To help you manage the requirements and issue tracking processes and to ensure that you have adequate test coverage, Inflectra recommend that you use Rapise with a test management system
such as SpiraTest. That way you can maintain all your requirements, test cases and defects in a single place.

Once you have created the test, you can playback your test from within Rapise, run it from the command-line or execute it remotely using RapiseLauncher in conjunction with SpiraTest. A report
detailing the outcome of each step of the test will be automatically generated.

Recording, playback, the report, and the Rapise engine are all customizable.

Samples Index Top Previous Next

Rapise includes several sample tests that you are free to read, modify, copy and use. They are located in: RapiseDataDirectory\Samples. Unless you specified otherwise, the RapiseDataDirectory will
be:

C:\Users\Public\Documents\Rapise.

The sample tests are described below.

ActiveX

These samples demonstrate the testing of Microsoft ActiveX / COM controls used in Visual Basic applications including the MSComCitl library. The samples include the Microsoft FlexGrid Control, MS
Common Toolbar Control, Microsoft Tabbed Dialog Control, TabStrip, and Microsoft Windows Common Controls 6.0 [MSCOMCTL.OCX].

AdobeFlex3
This is a set of regression tests for Adobe Flex 3.x controls.

AdobeFlex4

This is a set of regression tests for Adobe Flex 4.x controls.

AnalogRecorder
This sample demonstrates Analog Recording.

FarPoint
This sample script demonstrates using the FarPoint library to test the FarPoint SpreadSheet Control.

HTMLS

This sample tests a HTML5 application. This sample demonstrates the capabilities of the HTML5 DOM browser library. The application under test contains various HTML5 specific controls, such as:
color, date, datetime, email, range, progress, etc.

The sample is also available online at http://www.libraryinformationsystem.org/Htm|5/AUTHTMLS5.htm

Java

This sample tests a Java AWT/SWING application. This sample demonstrates the capabilities of the Java library. The application under test contains various standard GUI controls, such as: button, edit,
tree, combo box, menu, etc.

Java SWT

This sample tests a Java SWT/RCP application. This sample demonstrates the capabilities of the SWT and UlAutomation libraries. The application under test contains various standard GUI controls,
such as: button, edit, tree, combo box, menu, etc.

jQuery-Ul
This sample illustrates using the jQuery HTML DOM extension library that allows you to record/playback test scripts against web applications using widgets from the jQuery Javascript library framework.

Library Information System

These tests can be used to test the sample library information system web application hosted at http://www.libraryinformationsystem.net. This is the same sample application used by SpiraTest and
illustrates how you can use SpiraTest to manage and execute automated Rapise tests. A copy of these tests is also available in new installations of SpiraTest v3.2+.

Managed

This sample tests a .NET 2.0 application. This sample demonstrates the capabilities of the Managed library. The application under test contains various standard GUI controls, such as: button, edit, tree,
combo box, grid, listbox, listview, menu, etc.

QtFramework

TThis sample tests a sample QT Framework cross-platform application. This sample demonstrates the capabilities of the QtFramework library. The application under test contains various standard Qt
widgets, such as: button, edit, tree, combo box, etc.

Silverlight

9/16/2014 Page 2 of 105

This sample tests a Silverlight web application. This sample demonstrates the capabilities of the UIAutomation library. The application under test contains various standard GUI controls, such as:
button, edit, tree, combo box, menu, etc.

SimulatedObject
This sample opens MS Paint and draws on its canvas. It uses Simulated Objects and several related methods: DoM Move(X,Y), DoLB Down(), DoLB WUp(), and DoSendKeys(text).

SampleATM

This sample tests an MFC application. You will also learn how to organize your test script in modular form, how to launch the AUT from your test script and how to execute various actions on GUI
controls.

UsingCustomStrings
This sample demonstrates how to integrate Rapise tests with other tools using Custom Strings. TestFinish() is used to analyze and save test results. For more details, see: Custom Strings.

UsingDatabase

This example shows how you can use a relational (SQL) database to create Data-Driven tests. This script reads test case data from a spreadsheet ADO datasource to test Calculator.

UsingDLLHandlerManaged
This sample shows how to unit test managed DLLs. You'll see how to use methods CreateClassinstance() and InvokeMember().

UsingDLLHandlerUnManaged
This sample shows how to unit test unmanaged DLL code. You'll learn how to register (UserWrap.Register) and execute (UserWrap.ShellExecute) a function.

UsinglmageCheckPoint

This example shows how to create image checkpoints.

Usinginclude
This sample demonstrates two ways to include external files/functions:

1. eval(g_helper.Include(...)): include a file with utility functions.
2. SeSRunJSScript(...): include and execute external function with its own object map.

UsingMSAccess, UsingMSExcel, UsingMSWord

These samples demonstrate how you can work with Microsoft Word, Excel, and Access from scripts. You'll learn how to test applications that expose a COM interface.

UsingOCR
This sample demonstrates usage of the Optical Character Recognition (OCR) functionality.

UsingRegistry

This sample demonstrates usage of the windows registry. The registry is queried to determine the OS (XP/2003/Vista, etc) and owner.

UsingReporting
This sample illustrates various reporting features:

1. Regular reporting (Tester.Assert, Tester.Message)

2. Custom attributes (Tester.SetReportAttribute, Tester.ResetReportAttribute)

3. Stacked attributes (Tester.PushReportAttribute, Tester.PopReportAttribute)

4. Nested Tests (Tester.BeginTest, Tester.EndTest)

5. Inserting Links, Text and Images into the report (tags parameter, SeSReportText, SeSReportLink, SeSReportimage)

UsingSpreadSheet

This example shows how you can use Excel spreadsheets to create Data-Driven tests. This script reads test case data from an XLS spreadsheet to test Calculator.

UsingXML

This sample demonstrates how to read, modify and write XML files.

WebServicesREST
This sample demonstrates how you can use the Rapise Web-Services module to write and execute automated web service tests against an HTTP RESTful web service.

Tutorial: Record and Playback Top Previous Next

In this section, you will learn how to record and execute a Rapise script against a web application. We will be using a demo application called Library Information System. Our test will be simple. It will
log on to the library catalog, navigate to the main menu, and click on all of the menu options to make sure the links are working.

1. Open Rapise
Go to Start > All Programs > Inflectra > Rapise. The following window should appear.

9/16/2014 Page 3 0of 105

2. Open the AUT (Application Under Test)
Open up Internet Explorer. You will find it in Start > All Programs > Internet Explorer. In Internet Explorer, navigate to: http://www.libraryinformationsystem.org:

3. The Select an Application to Record Dialog
In the Rapise window, press the Record/Learn button on the Ribbon.

The Select an Application to Record... Dialog (SAR dialog) will open.

9/16/2014 Page 4 of 105

There are two sections to the SAR dialog. In the bottom section, you select which Rapise library will be used during the recording session. Because we will be recording our interactions with Internet

Explorer, make sure that the Internet Explorer HTML library is checked. No other libraries should be selected. See below:

Library Description

7] Autn Detect librany automatically

7] MET MET 1.0, 20, 3.0, 3.5 with Accessility

Internet Explorer HTML HTHL DOM-based recorder for Intermet Explorer

[Firefom HTML HTHL DOM-bazed recorder far Mazilla Firefox

7] Generic Generic: library containg basic definitions for most commo

Available Applications
@

‘ C:\Program Files'\DellTPad"\Apntex.exe

U Heml

Windows Media Player

Eﬁ\dobe Photoshop C53 Bdended - [Urtitled...
&0 HelpfAndSamples - Microsoft Visual Studio {...

nflecira | Library Information System - Wind...

@Tutcrial Record and Playback - Mozilla Fire..

FID
45432

63624
5204

48244
50832

Path

C:\Program Files (xB6)\Microsoft Office’\Cffice!
CAWindows SysWOWed undll 32 exe
CAWindows' SysWOWESundll 32 exe
C:\Program Files (x86)\Adobe"Adobe Photost
C:\Program Files"\Del TPad"\ApntEx exe
C:\Program Files (<86)\Microsoft Visual Studiol
C:\Windowsexplorer exe

C:\Program Files"Intemet Exploreriexplore ex|
C:\Program Files (xB6)'X-PRO Vonage'#-PR(
CAWindows SysWOWed undll 32 exe
C:\Program Files"WWave Systems Copt Truste
C:\Program Files (xBE)\Mozilla Firefoxfirsfox €

C:\Program Files <BE}\Windows Media Playe

The Recording Activity Dialog (RA dialog) will appear:

The RA dialog has a grid. As you interact with the sample Library Information System program, the grid will automatically populate with your actions.

4. Recording

Let's begin creating the test. On the library information system login page, click on the Log In link in the top-right of the screen.

9/16/2014

In the top section of the SAR dialog, we choose which application to record. Scroll down the available applications and click once on Inflectra | Library Information System, so that it is highlighted.
Now, press the Select button near the bottom right of the dialog.

Page 5 0of 105

In the username text box, type librarian
Press the tab key. You'll notice that the RA dialog has changed. Your actions, clicking Log-In and entering a username, are listed in the grid:

The password for user librarian is also librarian. Type the password in and then press the Log-In button.
Two more rows should appear in the RA dialog: one to represent the password entry, and one to represent the button click:

You should now be on the main menu of the Library Information System with the user's name listed in the top-right:

Click the Book Management button. It is highlighted in the next screenshot:

LIBRARY INFORMATION SYSTEM

Home Book Management or Management

9/16/2014 Page 6 of 105

You should now be on the Book Management page (see the below image). Click the Home button to go back to the main menu.

Click the Create new book link:

BOOK MANAGEMENT

The following books exist in the systemll (Create new book

You should now be on the Create New Book page (see image below). Click the HOME button to go back to the main menu.

Now, click the Author Management button:

LIBRARY INFORMATION SYSTEM

Home Book Management Author Management

You should now be on the Author Management page (see image below):

L= AU LN 0 £

Click the Create New Author link:

9/16/2014 Page 7 of 105

AUTHOR MANAGEMENT

The following authors exist in the systemy§ {Create new author)

ID Name Age Edit
1 Ian McEwan 42 Edit
2 Charles Dickens 105 Edit
3 Arthur Conan Doyle 125 Edit
4 Agatha Christie 98 Edit

You should now be on the Create New Author page (see below). Click the Home button to go back to the main menu.

At this point, there should be 11 rows in the RA dialog grid.

You are now back on the Main Menu. Click Log Out (top-right).

To end the recording session, you can either press CTRL+3 or press the Stop button on the Record dialog. End the recording session now. You will see a script created from your recording session in

the Rapise window. Let's save our test. Press the Save button at the top left of the Rapise window.

5. Playback

Let's execute the test we just created. First, close Internet explorer. Rapise will open a new instance of Internet Explorer to the correct url (www.libraryinformationsystem.org) when the test begins.

To execute the script, press the Play button at the top middle of the Rapise window.

After execution, a screen like the one below will appear. Each row represents a step in the test. The rows with green text are steps which passed, whereas the rows with red text are the steps which

failed.

9/16/2014

Page 8 0f 105

For more information on the report, see Automated Reporting.

Tutorial: TwoDialogs Sample Top Previous Next

This section outlines the usage of Rapise for testing a very simple AUT.
Please run the application now. You will find it in the samples directory where you installed Rapise.

By default, that will be c:\Users\pPublic\Documents\Rapise\Samples\TwoDialogs\TwoDialogs.exe.

You will see the following:

Please run the application a few times and observe its behaviour. If you press the OK button with the first edit box empty, the application will complain and return you to the dialog box.
If you put text in the first edit box but not the second, you will be shown a single line of text in a read-only edit box..
If you enter text in the second edit box as well as the first, pressing OK will put two lines of summary information in the read-only edit box.

An adequate testing strategy for this over-simple application might be to:

1. Put data in the first text box but not the second, and verify that the summary information is correct.

2. Press the OK button with no data in either text box, and verify that a message box is displayed.

3. Verify that if the success "Thank You" message is displayed the edit box input fields are cleared (but not the summary information).

If at this point you do not understand what the application is supposed to do, or the application is not behaving as described here, please contact support and clarify the details before proceeding.

Now, let's use Rapise to implement the first of these tests.
Step 1. Run the TwoDialogs application and leave it in its default start state.

File

Step 2. Start Rapise and make the window a conveniently large size. Click on the button (top left). Choose the first option there, "New Test."

9/16/2014 Page 9 of 105

Recent Tests

C\ProgramData\Documents'\Rapise\ Samples\ CreateMewBook\CreateMewBook.sstest

MNew Test

Dz mrzi i Ci\Users\adam.sandman\Documents\My Rapise Tests\Web Test 1\Web Test 1.sstect
C\TemphSmokeTest\SmokeTest\SmokeTest.sstest
Ch\Users\adam.sandmanDocuments\My Rapise Tests\Auto Test 1\Auto Test 1.sstest
Cih\Users\adam.sandmanDocuments\My Rapise Tests\REST Test ProjectyREST Test Prg
C:\TemphRapiseTests\ECF_AutoProjectBackup-DO NOT DELETE\ECF AutoProjectBacky
Cih\Users\adam.sandmanDocuments\My Rapise Tests\SpiraTeam v4.0 REST AP Test\3
C:\ProgramData\Documents\Rapise\Samples\WebServicesREST\WebServicesREST. sste

C\Users\Public\Documents\Rapise\Samples\UsingInclude\UsingInclude.sstest

Step 3. Navigate to the desired path using the "..." button on the "Create New Test" dialog.

Leave the "Use Methodology" as "Basic" for now.
Press the "Create" button.

You will now see the following:

Step 4. Recording the test sequence. Press the "Record/Learn” button in either the ribbon or on the toolbar. It has an icon like this:

9/16/2014 Page 10 of 105

You will see an application selection dialog like the following.

Select the "Inflectra Rapise Two Dialogs Sample" entry.
Leave the library selection as "Auto."
Press the "Select" button at the bottom right.

Step 5. Record the activity in the application.

Rapise will pause while it starts the necessary background processes and hooks into the running AUT.
Once those tasks are complete, you will see the following "Recording Activity" for "Inflectra Rapise Two Dialogs Sample" dialog:

The AUT will be brought to the foreground and Rapise will be minimized.
You will achieve best results in recording if you observe the following guidelines:

(1) Work slowly while recording. Perform one action and wait for the results to be recorded in the Recording Activity dialog as a new grid line-item before going to the next item.

(2) Use the mouse to select controls and operate them. Avoid using keyboard shortcuts and keyboard commands.

Step 6. Click in the first edit box in the TwoDialogs application. Type a name in there.

Watch the Recording activity dialog as you operate the AUT interface. As you press a button or fill a field, notice that the grid in the Recording activity has entries added to it.

As you take these actions, you will see the Recording Activity grid update accordingly:

Recording Activity for "Inflectra Rapise Two Dialogs Sample”
" Object Action Data Comment
i1 Please erter... SetText chris Please enter your name:: Change text to chris'
T2 0K Action Press button ‘0K
[VerfyiCts1) | [Lean(Cil+2) || Spy(Ctrl+5) | [Pick Object.. | [|
Analog (Ctrl+4) _Simulated - Cancel | [_Finish (Ctrl=3)]
Last captured: Win32Button (OK) [Transparent

9/16/2014

Page 11 of 105

For a full explanation of the controls on this dialog, refer to the reference for Recording Activity Dialog
When you have finished recording the activity for the AUT, press the "Finish" button or CTRL+3.

Note: Do not terminate the Twopialogs application.

When you do this, the "Recording Activity" dialog will be closed and the AUT will lose focus. Rapise will change the view to display the newly recorded script. It will look something like the following:

Notice that the two steps of the script are automatically documented and that they correspond precisely and in the same order as the way they appeared in the Recording Activity dialog during
recording.

Step 7: Run ("Play") the recorded test script. Press the "Play" button on the ribbon or the toolbar.

As the script runs, the Rapise window will be minimized to the taskbar and you will see the results of the script's activities on the TwoDialogs application window.
At the end of the script execution, the Rapise window will be restored and the view will be of the report for the test:

Step 8: A refinement on the launching of TwoDialogs.exe.
To date, we have operated on the assumption that the Twopialogs sample program (application) is running. If this situation remained, the test script would require that the AUT be running before the
script started. That would require that the person running the test remembered where it resided. To overcome this, Rapise provides a way to have the script run the program (AUT) before beginning
the test.

Rapise has an underlying scripting language based on JavaScript (see Scripting). This help system covers available scripting objects in detail from a practical perspective. For the moment, we want
to simply take the shortest path to starting the application before attempting to run the test.

There are at least 3 ways of adding application launch code to your test.
Way 1: Drag The File from the Test Files view

First, switch to Test Files view. Right-click on "Test" folder and choose "Add File(s)..." menu item:

9/16/2014 Page 12 of 105

Create File... £

Test Files L 5 Start
4[] T
»

b Create Spreadsheet...

| AddFile).. |

Mew Group...

Reload
Create Sub-Test...

Remove from Test Del

Remove All from Disk
T

And select the location of the Twobialogs.exe (normally, itis c:\program Files\Inflectra\Rapise\Samples\TwoDialogs\Twobialogs.exe),

Now you have the executable as a part of your test files set:

Test Files 1
4) Test

b) Reports

» = Scripts

] TwoDizlogs.exe

Test Files | Settings Object Tree

[T TwoDialogs.exe

i
l Recorded at
}

Tes.t .FT.I'Es * L start Page E;i TwoDialogsTest,js* 3] TwoDialogsTest_2011-02-18_15-0Ltrp
-l Test

+ —l Reports funetion Test ()

F1-o] Scripts [

m Inad likravies=iNCensrisn

The proper launch statement will be inserted:

function Test ()

{
Flobal .DoLaunch({'../../Rapise/Samples/TwoDialogs/TwoDialogs.exe');
I === Recorded at Tuesday, September 27, 2011 4:06:1% BM; ======
//Please enter your name:: Change text to 'chris'
Se5('Please_enter name_').DoSecTexc ("chris");
/fPress button 'CK'
SeS5('0K').Dokction():

}

Way 2: Type the Code

The c1obal object contains methods that are available to all scripts.
Select the Twopialogs. s file in the Test Files view of the Rapise main page.

f you wish to launch Twopialogs.exe once then just double-click on it in the tree. If you wish it to be launched every time the test starts then simply drag it from the tree into the source code:

Double-click the file name to open it in the main (editing) window of Rapise. You will see the generated script from the recording session from earlier steps in this sample.

Place the cursor in the main editing window and click on the first line after
function Test()

9/16/2014

Page 13 of 105

{

Now type
Global.
As soon as you type the ".", Rapise will give you a drop down list of all the available methods available in the Global object:
- DodnalogPlay(path, left, b
- Dodppactivateltitle]
g DolnvokeTest[pathToTes
=i DokillE yM ame(pracessMa
DokKillByPid{pid)
dLi]

i DoMessageBox(prompt. b

- Do0crTesseractfimg)

- DoOerT extract(img)

g DoSendKeys(keys]
Select the DoLaunch(cmdLine, wrkD) member and hit the Enter key.

Now your script contains the line:
Global.DoLaunch('")

You need to correct the references to the command line:

Global.DoLaunch ('"C:\\Program Files\\Inflectra\\Rapise\\Samples\\TwoDialogs\\TwoDialogs.exe"");

Way 3: Drag the Action from the Objects Tree

You may drag the method template from the Object Tree view. Expand the "Global" node and select the "DoLaunch” action in it. Drag the node into the proper position inside the script source:

Template call is inserted:

function Test()

Now you need to correct the references to the command line:

Global.DoLaunch ('"C:\\Program Files\\Inflectra\\Rapise\\Samples\\TwoDialogs\\TwoDialogs.exe"");

Tutorial: Testing Adobe Flex Applications Top Previous Next

Contents

Introduction

Prerequisites

Create a Simple Flex Application: Hello Flex

Enable HelloFlex Application for Testing
Link HelloFlex with Necessary Libraries
Add HelloFlex to FlashPlayerTrust

Record a Simple Test

Execute the Test

Using FlexLoader
See Also

Introduction

After going through this tutorial you?Il get a basic idea of how to test browser-based Flex applications with Rapise.

Prerequisites
This tutorial assumes that you have installed:

1. Rapise
2. Adobe Flex Builder 3 (http://www.adobe.com/products/flash-builder-family.html)
OR

Adobe Flash Builder 4 (http://www.adobe.com/products/flash-builder-family.html)

9/16/2014 Page 14 of 105

Create a Simple Flex Application: HelloFlex
Let's start from creation of a very simple Flex application.

1. Create home directory for the application: C:\HelloFlex. You may create any other directory that is more suitable for you, just do not forget to change corresponding paths used in this tutorial.
2. Create main file of the application: C:\HelloFlex\HelloFlex.mxml. Place the following code in it:
<?xml version="1.0" encoding="utf-8"?>

<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml"
viewSourceURL="src/HelloFlex/index.html"
horizontalAlign="center" verticalAlign="middle"
width="640" height="480"

<mx:Script>

<! [CDATA[

import mx.controls.Alert;
1>

</mx:Script>
<mx:Panel

paddingTop="10" paddingBottom="10" paddingLeft="10" paddingRight="10"

title="My Application"
>

<mx:Label tex
<mx:Button id:

"Hello Flex!" fontWeight="bold" fontSize="24"/>
"button" label="Button" click="{Alert.show('Button Pressed');}"/>

</mx:Panel>
</mx:Application>

w

. Create wrapper HTML for the application: C:\HelloFlex\HelloFlex.html. Place the following code in it:
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>HelloFlex</title>
</head>

<body scroll="no">

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
id="HelloFlex" width="100%" height="100%"

codebase="

ttp://fpdownload.macromedia.com/get/flashplayer/current/swflash.cab">
<param name="movie" value="HelloFlex.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#869ca7" />
<param name="allowScriptAccess" value="sameDomain" />
<embed src="HelloFlex.swf" quality="high" bgcolor="#869ca7"
width="100%" height="100%" name="HelloFlex" align="middle"
play="true"
loop="false"
quality="high"
allowScriptAccess="sameDomain"
type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer">
</embed>
</object>
</noscript>
</body>
</html

4. Compile the application (make sure that mxmic.exe is available in command line window. If Flex Builder 3 is installed then it is available at: "c:\Program Files\Adobe\Flex Builder 3.x\sdks\<SDK Version>\b

If Flash Builder 4 is installed then it is available at:
a) Open CMD window in C:\HelloFlex directory
b) Run command: mxmic HelloFlex.mxml

:\Program Files\Adobe\Flash Builder 4.x\sdks\<SDK Version>\bil .exe")

5. Test the application by opening C:\HelloFlex\HelloFlex.html in Internet Explorer.

9/16/2014 Page 15 of 105

Enable HelloFlex Application for Testing
To make HelloFlex application testable by Rapise you need to link it with automation libraries.

Link HelloFlex with Necessary Libraries
For Flex Builder 3.x, recompile the HelloFlex application using the following command line that links ion.swc and ion_agent.swc from Flex Builder 3 and FlexAdapter.swc from Rapise:

mxmlc HelloFlex.mxml -locale en US -include-libraries="c:/Program Files/Adobe/Flex Builder 3/sdks/<V: n>/frameworks/libs/automation_agent.swc","c:/Program Files/Adobe/Flex Builder 3,

For Flash Builder 4.x, recompile the HelloFlex application using the following command line that links ion.swc and ion_agent.swc from Flash Builder 4.x and FlexAdapter.swc from Rapise:

mxmlc HelloFlex.mxml -locale en US -include-libraries="c:/Program Files/Adobe/Flash Builder 4/sdks/<Version>/frameworks/libs/automation_agent.swc","c:/Program Files/Adobe/Flash Builder

Add HelloFlex to FlashPlayerTrust
Adobe Flash Player has restricted security settings for SWFs opened from file system. To enable testing of such SWFs their corresponding folders must be listed in FlashPlayerTrust directory.

Path to FlashPlayerTrust directory:

to enable testing for all users:
<system>\Macromed\Flash\FlashPlayerTrust

to enable testing just for current user:
Applicati \Macr ia\Flash Player\#Security\FlashPlayerTrust

(on Vista this path looks like:
c:\Users\<User Name>\AppData\ ing\Macr ia\Flash Player\#Security\FlashPlayerTrust

)

To register your SWF just create a file with the name "<name of your SWF>.cfg" and put it in this directory. In the file write a path to SWF folder.

Note: If you do not have FlashPlayerTrust directory in one of locations listed above then you will have to create missing directories yourself.

9/16/2014 Page 16 of 105

To register c:\HelloFlex\HelloFlex.swf
a) create file <Applicati \Macr ia\Flash Player\#Security\FlashPlayerTrust\HelloFlex.cfg
b) add this to the file: c:\HelloFlex

Record a Simple Test

1. Open C:\HelloFlex\HelloFlex.html in Internet Explorer.
2. Start Rapise and press Record/Learn button

3. Choose HelloFlex application and press Select, recording will start.

9/16/2014 Page 17 of 105

4. In HelloFlex application press Button and then press Ok in the alert message.

5. Then press Verify button on Recording activity dialog and click on "Hello Flex!" label. In Verify Object Properties dialog check Enabled property.

.. ¥erify Object Properties o =] 4

Narme i WValue

[T |Alpha 1

[T | AutomationClassName | Flex_abel

[T | Automationindex index0l

[T | AutomationN ame Hello Flex!

[T | Bitmap Hello Flex!

[T | BwBitmap Hello Flex!

[T |Class Internet Explorer_Serve
[T | ClassMame e controls. Label

T | Color 734012

[T | CurrentState null

I | DisabledColor 11187123
e ——
< »

Cancel |

o
b

6. You have recorded three basic steps of your test.

for "HelloFlex - dows Internet Explorer™
Object Aution Data Comment
bl | Button Click Click FlesButtan "Buttan'
2 oK Click. Click FlexEutton "OK"
a3 Hella Flex! “erify true “erify that Enabled=true

Learmn [Ctrl+2] S SpylChil+a) | | Pauze |
Analog [Clrl+4) | _Simulated | v| Cancel | Finizh [Ctrl+3] |
Last captured: HTMLObject [file: //C:A\HellaFlexsH elloF lex html) || |'_ Transparent

7. Press Finish button on Recording activity dialog. You now have recorded the test.

9/16/2014 Page 18 of 105

Execute the Test

Execute the test by pressing the Play button in Rapise.

Congratulations! You have successfully completed this tutorial and now know basics of testing Flex applications with Rapise.

Using FlexLoader for Flex 3 Applications
If you do not want to compile your Flex 3 application with automation libraries you have an option to use FlexLoader.

FlexLoader is a Flex 3 application compiled with the required automation libraries and capable of loading any given SWF application. With FlexLoader you do not need to modify your application to make if
(You will need to choose between FlexLoader 3 and FlexLoader 4 according to which Flex SDK version your application uses.)

To use FlexLoader 3 just copy FlexLoader.html and FlexLoader.swf from c:/Program Files/Infl /Rapisel/ ions/Flex/FlexLoader/bin to your web server near your application. Then type in browser URL
http://localhost/FlexLoader.html|? i swf
You can find sample application for testing here: c:/Program Files/Inflectra/Rapise/Extensions/Flex/FlexLoader/bin/Sample.swf

Using FlexLoader for Flex 4 Applications
If you do not want to compile your Flex 4 application with automation libraries you have an option to use FlexLoader4.

FlexLoader4 is a Flex 4 application compiled with the required automation libraries and capable of loading any given SWF application. With FlexLoader4 you do not need to modify your application to mak:
(You will need to choose between FlexLoader 3 and FlexLoader 4 according to which Flex SDK version your application uses.)

To use FlexLoader 4 just copy FlexLoader4.html and FlexLoader.swf from c:/Program Files/Inflectra/Rapise/Extensions/Flex/F oader4/bin to your web server near your application. Then type in browser U
http://localhost/FlexLoader4.htm|?: i fur swf

You can find sample application for testing here: C:\Users\Public\Doct \Rapi ples\AdobeFlex4\AUTFLexFP4\bin-debug\assets

See Also

o Adobe Flex

Tutorial: Testing REST Web Services L) LGt o

In this section you shall learn how to test a RESTful web services API using Rapise. We shall be using a demo application called Library Information System that has a dummy RESTful web service
API available for learning purposes. You can access this sample application at http://www.libraryinformationsystem.org, and its RESTful web service API can be found at:
www.libraryinformationsystem.org/Services/RestService.aspx.

What is REST and what is a RESTful web service?
REpresentational State Transfer (REST) is a style of software architecture for distributed systems such as the World Wide Web. REST has emerged as a web AP| design model that offers greater
simplicity over other web service protocols such as SOAP and XML-RPC.

A RESTful web API (also called a RESTful web service) is a web APl implemented using HTTP and REST principles. Unlike SOAP-based web services, there is no "official" standard for RESTful web
APIs. This is because REST is an architectural style, unlike SOAP, which is a protocol.

Overview
Creating a REST web service test in Rapise consists of the following steps:

1. Using the REST query builder to create the various REST web service requests and verify that they return the expected data in the expected format.
2. Parameterizing these REST web service requests into reusable templates and saving as Rapise learned objects.
3. Writing the test script in Javascript that uses the learned Rapise web service objects.

We shall discuss each of these steps in turn.

1. Using the REST Query Builder
Create a new test in Rapise called MyRestTest1.sstest. Once you have created it, click on the "Web Services" icon in the Test ribbon to add a new web service definintion to your test project:

This will display the Add New Web Service dialog box:

9/16/2014 Page 19 of 105

Enter the name of the web service that you're going to add, in this case enter "LibrarylnformationSystem.rest" and click "Create". This will add the REST web services definition file to your test project:

You will see on the right hand side, there is a new document editor for the .rest file. This is the REST web services query form. It lets you send test HTTP requests to the web service under test and
inspect the output being returned.

If you open up API documentation for our sample application (www.libraryinformationsystem.org/Services/RestService.aspx) you will see that it exposes several operations for retrieving, adding,
updating and deleting books and authors in the system. For this tutorial we shall perform the following operations:

1. Get the special SessionID to identify our test session
2. Get a list of books in the system
3. Add a new book to the system and verify that it was added

According to the documentation that means we will need to send the following requests:
(i) Get a Unique Session
URL: http://www libraryinformationsystem.org/Services/RestService.svc/session
Method: GET
Returns: Unique session ID that is passed to other requests to keep data separate for different demo users
(ii) Get this list of books
URL: http://www.libraryinformationsystem.org/Services/RestService.svc/book?session_id={session_id}
Method: GET
Returns: Array of book objects
(iii) Add a new book to the list
URL: http://www_libraryinformationsystem.org/Services/RestService.svc/book?session_id={session_id}
Method: POST
Pass a populated book object:

. "Name": "Book Name",
Body: "AuthorId": 1,
"GenrelId": 1,
}
Returns: Single book object that has its Bookld populated
The first request will be to get the unique session ID that we will need to pass to the other requests. This is needed by our sample application to prevent testing by different users interfering with each
other. To create this request, simply enter the following information on the REST Request form:

e Name: Get_Session
e Method: GET
e URL: http://www.libraryinformationsystem.org/Services/RestService.svc/session

You should now have it populated as illustrated below:

" Sarivege Bl [Effoweme—

REST Request

MName: Get_Sessicn

Method: GET + httpfiwww libraryinformationsystem.org/Services/RestService sve/session -

Eody: ':V)

Response Header | Response Body

This web service request requires that we pass credentials by means of HTTP Basic authentication. So click on the "REST" tab in the Rapise ribbon and click on the "Add Credentials" button.

This will display the "Add Credentials" dialog box:

9/16/2014 Page 20 of 105

Enter librarian as both the username and password and click "Add".
Now click the "Send" button and the request will get sent to the web service:

REST Request
Mame: Get_Session
Method GET ~ httpiwww libraryinformationsystem.org/Senices/RestService svc/session -
Credentials: librarian [
Body: v
Response Header | Response Body | F 1 XML
Name WValue
Stats Code 200 0K
Content-Length 13
Cache-Control private
Content-Type application/xml; charset=utf-3
Date Tue, 18 Jun 2013 20:01:056 GMT
Set-Cookie ASP MET_Sessionld=acShexveazumbodfvdne
Server Microsoft-IIS/7.0
X-AspNet-Version 4030313
X-Powered-By ASPNET

¥ Start Page

estTestljs

REST Request
MName: Get_Session
Methad: GET + hitplfwnan libraryinformationsystem.org/Services/RestService svo/session -
Credentials: librarian [

The Response Header tab will display the headers coming back from the web service. The Status Code 200 OK means that the request succeeded and that data was returned. If you click on the
"Formatted XML" tab, you will see the XML serialized data returned from the web service:

Body: (v)

Response Header I Response Body | Formatted XML
<string xmins="hitp://schemas. microsoft.com/2003/10/Senzlization>e46ee523-7dcf-4cc1-9391-2deb 370924 7e</sining > "

Since Rapise uses JavaScript as its scripting language, it is usually easier to work with JSON (JavaScript Object Notation) serialized data rather than XML. In the case of the sample Library Information
System web service, you can change the format that it accepts and retrieves by sending two special HTTP headers:

e Content-Type: application/json
e Accept: application/json

To add these headers to the request, simply click on the "Add Header" button in the REST ribbon tab. This will display the following dialog box:

Choose the HTTP Header "Accept" from the list and enter "application/json" as the value. Repeat for the "Content-Type" header. You should now have the following populated request:

9/16/2014 Page 21 of 105

Now click the "Send" button and the request will get sent to the web service:

Response Header | Response Body | Formatted JSON ‘
Name Value
Status Code 200 OK
Content-Length 38
Cache-Control private
Content-Type application/json; charset=uti-8
Date Tue, 18 Jun 2013 20:15:45 GMT
Set-Cookie ASP NET_Sessionld=i3x3krobsSosudy2edacs]
Server Microsoft-IIS/7
X-Asphet-Version 4030319
X-Powered-By ASP NET

The Response Header tab will display the headers coming back from the web service. Note that the returned Content-Type is listed as "application/json" as requested. If you click on the "Formatted
JSON" tab, you will see the JSON serialized data returned from the web service:

‘ Response Header I Response Body | Formatted JSON

"82439boc-37e4-4064-820e-22d738cd 1e34”

We have now completed the creation of our first test operation. Click on the "Save Requests" button in the Rapise REST Ribbon to make sure our changes have been saved.
Now click on the "Clone request" icon in the REST request explorer in the right-hand side of the screen:

This will display the Clone Request dialog box. This lets us create a new REST request that contains the headers and authentication already defined on our existing request. This will save time over
creating a new REST request from scratch:

Enter the name "Get_Books" in the dialog box and click the "Clone" button. This will create a new REST request with this name:

For this request we need to pass through the SessionID in the querystring. Rather than hardcoding it in the URL, we can make use of the parameterization feature of Rapise. Click on the "Add
Parameter" button in the Rapise REST Ribbon. This will display the "Add Request Parameter" dialog box:

Click the "Add" button and the parameter will be added to the request. Now change the URL to:

URL: http://www.libraryinformationsystem.org/Services/RestService.svc/book?session_id=

Then position the caret at the end of this URL and click the "Insert in URL" button. This will insert the parameter token in the URL at the specified point:

9/16/2014 Page 22 of 105

REST Request
MName: Get_Boaks

Method: GET w http=fwaw libraryinformationsystem org/Services RestService sve/book Peession_id={zession_id}

Credentials: librarian [

Headers: -
MName Value Operations
Accept application/json |:>*|
Content-Type application/json %]
Parameters: s
MName Value Operations
{session_id} 82439bcc-37ed-4c64-820e-22d798cd 1684 [Insertin URL] [X]

Now click the "Send" button and the request will get sent to the web service. This will return the list of books serialized as a JSON array of objects:
|_| Respense Header | Response Bndy| Formatted JSON |

"Ruthorld": 3,
“"Genre": {

"Ild": 2,

"Name": "Murder & Mystery”

"Genreld": 2
“Id": 1

"Name™: "Hound of the Baskervilles”
13
Ruthar”; {
"Age™: 125,

Id™ 3,
"Name": "Arthur Conan Dayle”
1

We have now completed the creation of our second test operation. Click on the "Save Requests" button in the Rapise REST Ribbon to make sure our changes have been saved.

Now click on the "Clone request" icon in the REST request explorer in the right-hand side of the screen. Enter the name "Add_Book" in the dialog box and click the "Clone" button. This will create a new
REST request with this name:

This operation will add a new book to the system, so it's a POST request. Change the Method type in the dropdown list from "GET" to "POST".

Expand the "Body" field on the form. This is where you can enter in an XML or JSON serialized Book record that will get added to the system. For now we'll leave this blank and let Rapise serialize the
body for us later on when we actually write our test script. So we should now have:

We have now completed the creation of our third test operation. Click on the "Save Requests" button in the Rapise REST Ribbon to make sure our changes have been saved.

2. Saving the REST Requests as Objects

Now that we have created our three REST requests, the next step is to actually create the Rapise objects that we can use in our JavaScript test scripts. Click on the "Update Object Tree" button in the
Rapise REST Ribbon to tell Rapise to update the Object Tree with our new requests:

9/16/2014 Page 23 of 105

Rapise will open a command prompt window in the background and then display a confirmation message once the Object Tree has been updated. Click on the "Object Tree" tab of the main Rapise
explorer, click the Refresh icon and you will see the "LibrarylnformationSystem" heading displayed, with the three saved REST request listed underneath:

- Object Tree ChUsers\adam.sandmamD I Object Tree Chlsers\adam.sandma
EH:I EH:I LibranyInformationSystem
5.0 Add_Book = J
Get_Books =4 DoExecute
-0 Get_session @+ GetCredential
) Global -+ GetMethad
{(3} User Functions @+ GetName
iir User Variables @+ GetParameters
@+ GetRequestBodyObject
i@+ GetRequestBodyText
@+ GetRequestHeaders
@+ GetResponseBodyObjec
@+ GetResponseBodyText
Lfd GetBecnnncaHaadare
4 i

Object Tree

If you expand one of the REST requests (e.g. Add_Book), you'll see that it has a single operation "DoExecute” that executes the web services and a series of properties available for inspecting or
updating any part of the REST request prior to it being sent to the server.

In the next section we shall illustrate how you can write a test script using these learned objects.

3. Writing REST Test Scripts
Open up the main MyRestTest1.js file in the Rapise editor. It will initially consist of a single empty function Test():

E Libra

; S/¥R¥E¥E4444 Script Steps FEFEFEEEEEREES

4 function Test()
S i

o g_load libraries=["Web Service"];

The first task is to get a new Sessionld from the server using the Get_Session operation. To do this, drag the "DoExecute" operation from under the "Get_Session" object into the script editor, in
between the opening and closing braces of the Test() function:

¥ Start Page

4 function Test()

{
T Se5('LibraryInformationSystem Get_ Session').DoExecute(null);
}

T o

g_load libraries=["Web Service"]:

This will execute the web serviced and return the Sessionld. To actually access the retrieved value, you need to drag the "GetResponseBodyObject" property to the script editor, under the previous
line. Then add the JavaScript code var sessionId = to actually store the value. We will also add a Tester.Message (sessionId) ; line afterwards to write out the value of the sessionld to the
test report. This will help us make sure we are getting back a valid response from the web service. You should now have the following code:

funetion Test ()
{
Se5({'Librar
var sessionId = Se5('Li
Tester.Message (sessionld):

ystem Get_Session').DoExecute (null);
InformationSystem Get_Session') .GetResponseBodvObject ()

g_load libraries=["Web Service"];

Save this test and click "Play" to execute the test. You should now see a report similar to the following:

B myresttestijs B LibraninformationSystemrest ®% Start Page [FRRNNGLEil s BE LR RE R ER At

Name Start = Type Status Comment Iteration
000 - o W g =
Starting scenario: Test 13:37:16.020 Message Info
Get_Session.DoExecute([null]) 13:37:.17.486 Assert Pass Returned Value: true 0
d51f97ea-dB79-4ebl-b585-554690b88cef7 13:37:17.486 Message Info 0
B ¢ MyRestTestl 13:37:17.486 Test Pass Passed:1 Failed:0
i~ TestPass
@ Total:4 Pass:2 Fail:0 Info:2

Now we need to add the code to get the list of books. To do that, simply drag the "DoExecute" operation from under the "Get_Books" object into the script editor. Then change the (null) argument to
instead provide the session id as a Javascript dictionary:

9/16/2014 Page 24 of 105

SeS('LibraryInformationSystem Get Books') .DoExecute ({"session_id":sessionId}):
To get the list of books as a JavaScript array, drag the "GetResponseBodyObject" property to the script editor, under the previous line. Then assign the value of this property to a variable such as
"books":

var books = SeS('LibraryInformationSystem Get_ Books') .GetResponseBodyObject () ;

Now we can add code to test that the number of books returned matches the expected value. Type in the following code:
Tester.AssertEqual ('Book count matches', 14, books.length);

You should now have the following code:

function Test()

H

Se5("'LibraryIn rstem Get Session') .DoExecute(null);
var sessionId = S5e5('Libr ystem Get_Session') .GetResponseBodyObject();
Tester.Message (sessionld);

nformation

Se5('Libr nformatio
wvar books = Se5('Libr
Tester.hAssertEqual ('Book ©

rstem Get Books') .DoExecute ({"session_id":sessionlId}):
=stem Get Books') .GetResponseBodyCbject():
nt matches', 14, books.length);

formati

-}

g_load libraries=["Web Service"];

Finally we need to add the code to add a new book to the system. To do that, simply drag the "DoExecute"” operation from under the "Add_Book" object into the script editor. Then change the (null)
argument to instead provide the session id as a Javascript dictionary:

SeS('LibraryInformationSystem Add Book').DoExecute ({"session_id":sessionId});

To provide the data for a new book, we will need to drag the "SetRequestBodyObject" property of the *Add_Book" object to the line above the DoExecute and pass in a populated JavaScript object:
var newBook = {};
newBook.Name = 'A Christmas Carol';
newBook.AuthorId = 2;
newBook.GenreId = 3;
SeS('LibraryInformationSystem Add Book') .SetRequestBodyObject (newBook) ;

Finally Add code to test that our new book was added correctly and the count has increased by one:

SeS('LibraryInformationSystem Get Books') .DoExecute ({"session_id":sessionId});
books = SeS('LibraryInformationSystem Get Books').GetResponseBodyObject ()
Tester.AssertEqual ('Book count matches', 15, books.length);

You should now have the following code:

function Test()
H{
Se5('Librar 1 ;stem Get_Session').DoExecute (null);
wvar sessionId = S5eS5('Libra nformationSystem Get Session').GetResponseBodyCbject():
Tester.Message (sessionId);
S5e5('Libr nformatio tem Get_Booksz').DoExecute({"session_id":sessionld})
wvar books = Se5('Libr formati vstem Get_Books') .GetResponseBodyCObject ()
Tester.AssertEqual ('Book count matches', 14, books.length):
var newBook = {};
newBook.Name = 'R stmas Carol';
newBook.AuthorId =
r=tem Add Book') .SetRequestBodyCbject (newBook) ;
7stem Add Book').DoExecute({"szession_id":sessionlId});
tem Get Books').DoExecute({"session_id":sessionId}):
stem Get Books').GetResponseBodyCbject():
Tester.AssertEqual ("Book count matches', 15, books.length);
ol s

Save this test and click "Play" to execute the test. You should now see a report similar to the following:

estTestljs E LibrarylnformationSystem.rest " Start Page w MyRestTestl_2013-06-19_14-49trp

Name Start 2 Type Status Comment Iteration
al [a] -| @ o | -
Starting scenario: Test 14:49:03.725 Message Info
Get_Session.DoExecute([null]} 14:4%:04.334 Assert Pass Returned Value: true 0
c3d8dcd4-6125-427d-93%9a-0dd181b3ccel 14:49:04.334 Message Info 0
Get_Books.DoExecute([{"session_id":"c3d8dcd4-6125-4 | 14:45:05.051 Assert Pass Returned Value: true 0
Book count matches 14:49:05.051 Assert Pass 0
Add_Book.DoExecute([{"session_id":"c3d8dcd4-6125-4 14:4%:.05.379 Assert Pass Returned Value: true 0
Get_Books.DoExecute([{"session_id":"c3d8dcd4-6125-4 | 14:49:05.597 Assert Pass Returned Value: true 0
Book count matches 14:49:05.597 Assert Pass 0
& b MyRestTestl 14:49:05.597 Test Pass Passed:6 Failed:0
TestPass
Total:9 Pass:7 Fail:0 Info:2

Congratulations! You have just created your first test script that tests a RESTful web service.

Features Top Previous Next

Rapise is a feature-rich test automation system, however all the features have been designed to make test automation as easy as possible.

9/16/2014 Page 25 of 105

Most of the features of Rapise fall into one of five categories:

(1) Building test scripts with little or no manual scripting.

(2) Reading and interpreting results and reports.

(3) Additional features and capabilities for sophisticated testing.

(4) Writing more involved or complicated tests using scripting.

(5) Extending Rapise to learn new or extended libraries of capabilities.

Depending on the application set being tested, not all of these features are necessarily needed for every situation.

For each feature, this document describes:

(1) The reason you might use a given feature.

(2) A summary of the basic value of the feature.

(3) An overview of how the feature works from the perspective of using it.
(4) At least one useful sample that demonstrates how to use the feature.

Recording and Learning Top Previous Next

Purpose
To understand what different objects might be found on a Ul screen, and how to recognize them, record their characteristics and interact with them using Rapise.

Value

A Ul screen entity (object) may consist of many different parts and components. Actions on these objects, and usage of these controls, must be captured in different ways, depending on the properties
of the object. Rapise provides four fundamental methods for capturing objects and corresponding user actions:

(1) Recording - Rapise is able to track user interactions with AUT and automatically capture affected objects and corresponding user actions. See Recording for more information.

(2) Learning - there are cases when it is not necessary or is not possible to track user interactions with AUT. In this case user can manually point to an object that should be captured by Rapise. See
Learning for more information.

(2) Analog Recording (Absolute/Relative) - this is for objects that are not standard in some important way, and so activity on them cannot be captured using recording or cannot be specified after
learning. Absolute Analog Recording is used to track mouse usage (movement and clicks) and keyboard events. For absolute analog recording, the positions these events are recorded relative to the
top-left corner of the system screen. (In contrast, in Relative Analog Recording, the events are recorded relative to the upper-left corner of the selected objecs.) The events are recorded in a file of type
arf (Analog Recording File).

(4) Simulated Object Recording - a Rapise user can use simulated objects when some objects are not natively supported by Rapise (e.g. their internal structure, properties and actions are unknown).
In this case, what is recorded are mouse clicks and keyboard activity. Compare to Analog Recording when all mouse and keyboard actions are recorded, including mouse up/down, mouse move
events. See Simulated Objects for more information.

Usage

Before an operation (press, enter text, select, click, etc.) can be performed on an object automatically, Rapise must be able to identify the object. That identification must be able to locate the object
definitively, and it must be able to duplicate the action or operation precisely. This carries several implications. Firstly, if the AUT is in a different position on the screen when it is started, Rapise must
still be able to find the objects in the AUT window. Secondly, if the positioning of objects on the AUT window is proportional or relative to the screen size of shape, Rapise must still be able to locate the
object.

A secondary set of considerations relates to the fact that the AUT Ul layout maybe sensitive to the context of the state of the application. For example, consider the case of a word processor. Pressing
the "bold" button doesn't predict what the result will be unless it is known whether the text highlighted is currently bold or not. A far more illustrative example is that of the Microsoft Paint utility. The
Microsoft Paint utility is the subject of a Inflectra sample, Simulated Object.

The most instructive way to identify the objects to Rapise is to practice with the tool and different types of objects. The best methodology to use is as follows:

(1) First, try to use Record/Learn to learn the object and record actions in a single step.

(2) If learning.recording fails to record actions in the grid, use SeSSpy to observe the object carefully and discover what libraries and classes are being used by the AUT.
(3) Use Verify (Ctrl+1) from the Recording Activity dialog to get summary information about the object.

(4) Use a more appropriate set of libraries when selecting the AUT prior to recording.

(5) Use Analog Recording with absolute positioning to identify and locate the object.

(6) Use Analog Recording with relative positioning to identify and locate the object.

(7) Use Simulated Object Recording to track the actions required and at the positions required.

(8) Look for custom libraries that support the technology being used by the AUT.

(9) Build your own custom library to support the technology in use by the AUT.

Recording Top Previous Next

Purpose
Recording is the name given to having Rapise track your interactions with an application.

Value

The actions you take in using the AUT are observed by Rapise and are transformed into a script (javascript), which you can execute using the Play button. The script can be extended and modified to
suit special purposes.

Usage

The Recording Activity (RA) Dialog is opened when you start recording using the Record/Learn button. When the Recording Activity dialog appears, Rapise has connected to your AUT and is ready to monitor and record
your interactions. You'll find instructions here or look at one of the examples - TwoDialogs or Sample Record and Playback

9/16/2014 Page 26 of 105

You'll notice that the RA dialog has a grid. As you interact with the AUT, your actions will be listed in the grid.
If you record an incorrect action, you can right-click on the action and delete it.

To ensure you successfully record your interaction with the AUT, navigate slowly through the AUT. Wait a second or two between each action to make sure Rapise has time to interpret and record your
action. Once your interaction is updated in the RA dialog grid, you are free to continue with the next action.

When you are done recording, press the Finish button on the RA dialog or type Ctrl+3. The RA dialog will disappear, and you will see an automatically generated script opened in Rapise.

See also

« If you have already recorded a script and want to record additional interactions in the same test, be sure to read Making Multiple Recordings.
* The RA dialog is described more thoroughly in Recording Activity Dialog.

e To learn how to run the script, see Playback. To learn how to modify the script, see Scripting.

o For a detailed tutorial, see Tutorial: Record and Playback in the Getting Started section.

« For more information on the Spy (ObjectSpy) capability, see Object Spy.

Learning Top Previous Next

Purpose

Objects are the controls and items on the screen of the AUT. "Learning" an object refers to the process of Rapise collecting enough information about the on-screen item to be able to reference the item
when the test script is run without ambiguity and regardless of its location on the UI.

Value

When Rapise "learns" an object, it records the object's type, its name and how to find the object again (locator). It saves everything it learns to the script so that the object can be identified when the test
is run. Rapise gives the object a simple name so that you can easily refer to it later if you decide to modify the script.

Usage
Objects are learned in two ways: (1) during recording or (2) explicitly.

Recording
During a Recording session, Rapise learns about each object with which you interact. For details, see Recording.

Explicitly

1. Open the Recording Activity Dialog. Instructions are HERE.

2. Place your mouse over the object you wish to learn. It should become surrounded by a purple box.
3. Press CTRL+2.

4. You will see a new entry in the Recording Activity Dialog, signifying that the object was learned.

Everything Rapise learns about an object is saved in saved_script_objects. You can see this variable defined in the <project-name> objects.js file that will be listed in the Test Files tab of the Rapise.
The following shows what Rapise saved about the "Please enter your name" text box in the TwoDialogs example:

Please_enter_your_name_:{
"locations": [
{
"locator name": "Location",
"location": {
"location": "4.4",
"window_name": "param:window_text",

"window_class": "param:window_class"

"locator_name": "LocationPath",
"location": {
"window_name": "param:window_text",
"window_class": "param:window_class",
"path": [
{
"object_name": "param:object_name",
"object_class": "param:object_class",

"object_role": "param:object_role"

"object_name": "param:window_text",

"object_class": "param:window_class",

9/16/2014 Page 27 of 105

"object_role": "ROLE_SYSTEM_DIALOG"

"locator_name": "LocationRect",
"location": {
"window_name": "param:window_text",
"window_class": "param:window_class",
"rect": {
"object_name": "param:object_name",
"object_class": "param:object_class",
"object_role": "param:object_role",
222,
: 40,
"w'": 140,
"h'": 23
}
}
1,
"window_text": "Inflectra Rapise Two Dialogs Sample",
"window_class": "#32770",
"object_text": "Chris",
"object_role": "ROLE_SYSTEM_WINDOW",
"object_class": "Edit",
"object_name": "Please enter your name:",
"version": 0,
"object_type": "Win32Text",
"object_flavor": "Text",
"object_library": "Generic"

See Also

e Recordin

e Learning invisible and Simulated Objects is slightly more complicated. You can find information on both in the Recording Activity Dialog section. Look for descriptions of the Pick Object button and the _Simulated
drop-down menu.

e Learn Object

Analog Recording Top Previous Next

Concept
During Analog Recording, Rapise records mouse movements, keyboard inputs, and clicks.

There are two types of Analog Recording: Absolute and Relative.

« Absolute: Mouse coordinates are recorded relative to the top left corner of the screen.
e Relative: Mouse coordinates are recorded relative to the top left corner of the object beneath the mouse cursor.

Usage

1. Open the Recording Activity dialog. Instructions are HERE.
2. To record in Absolute mode, press CTRL+4. To record in Relative mode, press the Analog button.
3. Press CTRL+Break to end analog recording. You can alternate between normal and analog recording in the same Recording session.

See Also

e Recording Activity Dialog

Absolute Analog Recording Top Previous Next
Purpose

Absolute analog recording is used to track mouse usage (movement and clicks) and keyboard events. For absolute analog recording, the positions these events are recorded relative to the top-left
corner of the system screen. (In contrast, in relative analog, the events are recorded relative to the upper-left corner of the selected objects.) The events are recorded in a file of type arf (Analog
Recording File).

Value

Not all applications can be recorded by locating and learning objects being used. A very good example of this is free-hand drawing in an application such as Microsoft Paint (Start Menu -> Accessories -
> Paint). There are several reasons why this application cannot be recorded using object tracking, learning and recording. The most important is that when the mouse is moved free-hand, it is operating
on the same object the whole time - the blank "canvas." Another reason is that the application changes behaviour and the positions of the canvas change depending on the size of the canvas and the
positions of floating toolbars.

Absolute analog recording is provided by Rapise to make it possible to make it possible to design and implement tests for these types of applications.

See Also

e Do Absolute Analog Recording
* Relative Analog Recordin

Relative Analog Recording Top Previous Next

9/16/2014 Page 28 of 105

Purpose

Relative analog recording is used to track mouse usage (movement and clicks) and keyboard events. For relative analog recording, events are recorded in relation to the top-left corner of the
application's window. The events are recorded in a file of type arf (Analog Recording File).

Value

Not all applications can be recorded by locating and learning objects being used. A very good example of this is free-hand drawing in an application such as Microsoft Paint (Start Menu -> Accessories -
> Paint). There are several reasons why this application cannot be recorded using object tracking, learning and recording. The most important is that when the mouse is moved free-hand, it is operating
on the same object the whole time - the blank "canvas." Another reason is that the application changes behaviour and the positions of the canvas change depending on the size of the canvas and the
positions of floating toolbars.

Relative analog recording is provided by Rapise to make it possible to make it possible to design and implement tests for these types of applications.

See Also

¢ Do Relative Analog Recordin
e Absolute Analog Recording

Simulated Objects Top Previous Next

Purpose

During normal recording, Rapise Learns about the Objects you interact with. If, for some reason, Rapise cannot learn an object, you can create a Simulated Object. Rapise identifies a simulated object
by its location in the Window or Dialog and can perform certain generic actions on it, such as Click and Fill In. This works in the reverse sense also. That is, if Rapise cannot identify an object, or, for
example, you click outside any defined object in the AUT's Ul, Rapise will create a simulated object to represent the action.

Value

Not all objects on a screen are "standard" or can be recognized by the libraries loaded. Some are compound objects, consisting of two or more individual objects that work together to deliver a Ul effect
or behaviour. Simulated objects "fill in the blanks" to allow Rapise to cause an event outside the normal set of objects.

See Also

o Recording Activity Dialos
e Sample Tests: The SimulatedObject sample.
o Deal with a Simulated Object

Object Libl‘aries Top Previous Next

Purpose
Object libraries define what objects and interactions Rapise understands during Recording and Learning. Most Object Libraries are specific to an application or a set of applications.

Usage
Rapise comes with several different object libraries:

1. Auto
2. Core Technologies
Generic*
Internet Explorer HTML
Firefox HTML
Java*
Java SWT*
Managed*
Ul Automation*
Qt Framework*
Adobe Flex AIR
ActiveX*
Web Services
User
Advanced Accessibility*
o Console
3. Widget Toolkits
o DOM GWT
o DOM GWT-Ext
o DOM SmartGWT
o DOM YUI
o DOM jQuery Ul
o HTML5
o DevExpress*
o
o
o
o
o

o]

OO0OO0O0O0O0O0O0O0O0OO0OO0O0

Infragistics*

Telerik*

ActiveX ComponentOne*
SyncFusion*

FarPoint*

*These libraries are not included in the free Rapise Express edition.
You can add your own Recording library--one that understands the objects in your application.

Selecting Auto as the application recording library will cause Rapise to select the one that it deems is most appropriate.

UlAutomation: Use this library with .NET, WPF, and Silverlight applications. When used with .NET 2.0+ applications you should also include the Managed library as well. When used with older .NET
applications, you should use the Generic library instead.

Internet Explorer HTML , Chrome HTML and Firefox HTML are used with Internet Explorer, Google Chrome and Firefox respectively. They understand only the DOM (document object model) and
therefore capture interactions with the web application, not the browser. They also have access to passwords. Tests recorded with either of the libraries can be run in any of the three browsers. See
Cross Browser Testing for more details.

User refers to Custom Libraries.

The DOM GWT library uses the Document Object Model to learn or record objects found in the Google Web Toolkit.

The DOM GWT-Ext library uses the Document Object Model to learn or record objects found in the Google GWT-Ext library.

The DOM SmartGWT library uses the Document Object Model to learn or record objects found in the Google SmartGWT library.

The DOM jQuery Ul library uses the Document Object Model to learn or record objects found in the jQuery Ul widget library.

TheHTMLS5 library uses the Document Object Model to learn or record objects found in the HTML 5 extensions library.

The DOM YUI library uses the Document Object Model to learn or record objects found in the Yahoo! User Interface library.

e o 0o 0 0 0 o

9/16/2014 Page 29 of 105

The Generic library uses Microsoft's MSAA event model to capture user actions. The Generic library should be used if there is no library more specific to the AUT available. The Generic library will
record a large set of applications, but it has drawbacks; it may skip some actions and/or record unintended actions. Passwords are not visible to the Generic library, and must be manually entered into
the test after recording.

The Advanced Accessibility library is for recording with Internet Explorer. In general, you will want to use the Internet Explorer HTML library. However, there is some information available through
Advanced Accessibility that is unavailable when looking solely at the DOM. For example: the absolute screen position of an object. Advanced Accessibility is not precise, as Internet Explorer HTML
is, and may miss actions or record unintended actions.

The Java SWT library is for use with the Eclipse Java Standard Widget Toolkit (SWT) applications.

The Console library is for use with Windows Console Applications that run in the command-line.

The Java library is for use with Java GUI applications that are written using either AWT or SWING. Use the SWT library instead if your application was written using SWT.

The Managed library is for use with Microsoft .NET 2.0 + applications. It adds some additional .NET 2.0+ specific-controls to the list supported in the Generic and UlAutomation libraries.

The DevExpress library allows you to record and learn using the various controls provided in the DevExpress DXperience v1.0 component library. This allows you to save time by having the system
recognize the various controls directly.

The Infragistics library allows you to record and learn using the various controls provided in the Infragistics component library. This allows you to save time by having the system recognize the various
controls directly.

The Telerik library allows you to record and learn using the various controls provided in the Telerik RadControls for Winforms component library. This allows you to save time by having the system
recognize the various controls directly.

The Adobe Flex AIR library is for use with applications that are written using Adobe Flash, Flex or AIR.

The Qt Framework library is for use with applications that are written using the cross-platform Qt Framework.

The Web Services library is for use with API tests that connect to either REST or SOAP web services. See the web service testing topic for more information.

e o o 0o o .

° o

See Also

e Recording

* To write an Object library specific to your application, see Custom Libraries.
.

.

Cross Browser Testing
If you interact with an object that is not defined in your chosen recording library, it will be treated as a Simulated Object.

Custom Libraries Top Previous Next

Purpose
If your application doesn't work with the predefined Recording Libraries, you can create your own.

Usage

Your library can provide Basic or Full support for your application. Basic support allows you to manually Learn objects, write test scripts, and Playback your scripts. Full support allows you to Record as
well. Create your library in the LibUser directory. Unless you specified otherwise, you will find it at:

C:\Program Files\Inflectra\Rapise\Engine\Lib\LibUser.

Basic Support

Add a Matcher Rule to the library for every window type in your application. The SeSMatcherRule includes information to identify your application, and a set of behaviors.
var yourApplicationRule = new SeSMatcherRule (
{
object_type: "yourAppObject",
classname: "yourAppFrame", //You can use a requla
behavior: [yourAppBehavior]

b

Override Actions: Override actions in yourAppBehavior (above). The action definitions you provides will be used during Playback. Overriding actions does not affect recording.
var HTMLFirefoxBehavior =
{
actions: [{
actionName: "Click",
DoAction: function(){}
Bo
{
actionName: "SetText",
DoAction: function(/*
i3]

String*/txt) {}
}
Full Support

Enable Recording: You can enable recording in two ways. If your application notifies the Accessibility Events interface about application events, you can override events in the behavior section of
SeSMatcherRules:

var newBehavior=
actions: [{/*section deleted for brevity*/}],
events:
{
onSelect: function(/**SeSObject*/ param, /**Boolean*/ badd)

U /96aatl

}

OnSelectAdd: function(/**S
/

i #5ac0®
}

ject*/ param, /**Boolean*/ badd)

var newRule = new SeSMatcherRule ({
object_type: "someType",
role: "someRole",
behavior: [newBehavior],

Otherwise, you will have to implement Custom Recording.

Custom Recording: With custom recording, it is the library's responsibility to:
o detect user actions in the application, and
o call RegisterAction() (which writes the action to the script).

See Also

« To see what actions and events can be overridden, see SeSBehavior.js (in the Rapise Engine).
o Check the EnginelLib directory for examples.
* You can alter the behavior of an action without creating an entire library. See the Actions section for more details.

Actions Top Previous Next
Purpose

Actions are anything the user can do to a GUI control, such as click, select, fill with text, etc. You can override the behavior of an action, without creating or altering a Recording Library, using
SeSExtendAction(). Overriding an action affects Playback, but not Recording.

Usage
SeSExtendAction() is used to override an action handler or add a new DoAction handler:

9/16/2014 Page 30 of 105

function SeSExtendAction(objectType, doActionName, replacementFunction)

where:

* objectType is the name or reqular expression specifying the object type(s) for which this extension should apply.
o doActionName is the name or regular expression specifying the DoAction handler that should be overridden.
« replacementFunction is the function containing overriding behavior.

In most cases SeSExtendAction() should be called from within TestInit().

Calling Base Actions
The function you are overriding is called the BaseAction. You can call it like this:

this.BaseAction (arguments) ;

You may override actions several times. For example:

function DoActionB ()
{
this.BaseAction();

}
function DoActionC ()
{
this.BaseAction();

}

SeSExtendAction ("Win32Button", "DoAction", DoActionB);
SeSExtendAction ("Win32Button", "DoAction", DoActionC);

When DoAction is called for the Win32Button, the following sequence is executed:

DoActionC->DoActionB->DoAction

See Also

* To see what actions can be extended, look in SeSBehavior.js (in the Rapise Engine).
Multiple Recordings Top Previous Next

Purpose

Every time you record, the script recorder updates your test script. Be cautious about what changes you make to the test script; some changes could be lost if the recorder is re-run (see Usage).

Usage

The test script path can be found in the Settings Dialog under Settings > ScriptPath. Unless you specify otherwise, the test script is named testname.js (where testname is whatever you named your
test).

Note that the Script Recorder only has knowledge of four functions and two data structures:
function Test()

function TestInit()

function TestFinish()

function TestPrepare()

array “g_load_libraries”

map “saved_script_objects”

SORWON =

You can make changes to the body of any of the above functions, and you can alter the initialization of g_load_libraries and saved_script_objects. All other changes are unsafe.

During Recording, the Script Recorder:

1. Appends newly recorded actions to the Test() function

2. Appends newly encountered objects to the saved_script_objects array

3. Updates g_load_libraries to reflect the library selections you made in the Select an Application to Record... Dialog
4. Ignores (and leaves intact) the definitions of Testlnit(), TestFinish(), and TestPrepare()

For example, suppose that you have the following code inside your script file:
[/ 1 cc /1 : will be re

rder

ed by rec

function Test ()

{

//comment - E
var external_var; /
global_var=value; //s

//SAFE everyth ion will be kept intact after recording

The parts of code marked UNSAFE will be deleted by the script recorder.

See Also

o Settings Dialog
e Select an Application to Record... Dialog
e Recording

Object Spy Top Previous Next

Purpose

Object Spy allows you to inspect an object's properties and state.

Value

Many controls on Uls are compound objects or there may be many instances of a similar object. To be sure to select precisely the correct object, or to select the correct object from a collection of similar
objects, the object's properties can be used to further identify the correct instance.

9/16/2014 Page 31 of 105

Usage
To spy on an Object:
1. Choose the type of Object Spy that you want to use. This can be done by clicking the down-arrow next to the Spy icon in the Tools ribbon:

There are four types of Spy available:

1. Accessible - This is used to inspect applications that expose their properties using the Microsoft Active Accessibility (MSAA) technology. This is typically used by applications written in MFC,
ATL, Qt, C++ and Visual Basic.

Java Object - This is used to inspect applications written using the Java AWT and Swing Ul frameworks.

Managed Object - This is used to inspect applications written in .NET 1.1, .NET 2.0, .NET 4.0 using Microsoft Windows Forms.

UlAutomation Object - This is used to inspect applications that expose their properties using the Microsoft's newer UlAutomation technology. This is typically used by applications written in
WPF, Silverlight and Java SWT.

HpON

For more details on each Spy type, refer to the Spy Dialog information.

. Open the SeS Spy Dialog. This can be done directly using the Spy button in the main Rapise window's toolbar, or by pressing the button in the Recording Activity dialog
during recording or learning.

Press the Start Tracking button (or type CTRL+G).

As you mouse over different objects, you will see the contents of the SeS Spy dialog change as it collects information about the object.

Mouse over the object you wish to spy on and press CTRL+G. The reduced-size tracking dialog will be expanded into the the larger SeS Spy Diaog dialog, presenting all the available information for
the object.

N

ohw

See Also
e See the SeS Spy Dialog for more details.

Object Manager Top Previous Next
Screenshot
Purpose

The Object Manager allows you to merge the object trees of two different Rapise tests. This can be useful when you have a new test that needs some of the objects from a test that you have already
written.

How to Open
Click on the Object Mgr icon in the main Rapise Test Ribbon.

Choosing Files to Merge

If you click on the [...] button in left hand side of the dialog box, marked Source, you will be able to select the Rapise test object file (*.objects.js) that you want to copy the objects from.
Once you have selected the source test, repeat the procedure for the destination test. In this case click the [...] on the right-hand side, marked Destination and choose the destination (*.objects.js) file.

9/16/2014 Page 32 of 105

Selecting the Objects to Merge

Once you have selected both the source and destination object files, the system will display the dialog that lets you see all the objects defined the source and destination tests. You can now choose
which objects to add/delete to/from the destination test:

For each object in the source test you will see an [+] expand icon in the left-hand side and for each object in the destination test you will see an [+] expand icon in the right-hand side.

To add an object from the source > destination test, simply click on the not-equals (#) icon and choose the equals option (=). To remove an object from the destination, simply click on the not-equals
(#) icon and choose the remove (X) icon.

Warning: All of the changes you make to the objects file are committed immediately, so only delete objects in the destination test that you no longer want to be part of the test.
Playback Top Previous Next

Purpose
When you record a test, Rapise translates your actions into a script. When you playback the test, the script is executed.

Usage
You can either run your script from the Command Line, or you can play it back while Rapise is open (described below):

1. You will first need to open your test. There is no need to have the AUT (Application Under Test) open. Rapise will open the AUT before it begins execution of the test.
2. Now, press the play button at the top of the Rapise window.

3. During test execution, Rapise displays an execution monitor dialog box that lets the user see the progress of testing playback. The dialog is only shown during test execution and can be turned off in
the Options dialog. The following is a screenshot of the test execution monitor.

Test: Button

b 1% | 0:00:01
Passed: 1 Failed: 0 Unresolved: 0

Starting scenario: Test

[Pause || Stoo(Cirl+ShiftsF121 | [Hide |

The user can pause or stop the test execution by clicking either the Pause or Stop button.

4. When Rapise is done executing the test, results will be displayed in a table. The rows with green text are steps that passed; the rows with red text are steps that failed. The following is a screenshot
of test results where every step passed:

See Also

* For more information about the report, see Automated Reporting..

o For information about recording a test, see Recording.

o Forinstructions on using the Command Line, look HERE.

Command Line Top Previous Next

Purpose
Rapise test scripts can be run from the command line.

9/16/2014 Page 33 of 105

Usage
The form of the command is:
cscript SeSExecutor.js path_to_sstest_file [evals]

where

path_to_sstest_file is a path to sstest file, e.g. "C:\Program Files\Inflectra\Rapise\Samples\SmarteATM\SmarteATM.sstest"
evals (optional) is a statement like this:

-eval:varname1=value1;varname2=value2;...

varname is a global variable associated with an option in the Settings Dialog. Global variables are prefixed with a g_. The global variables under the Execution and Recording headings can be found by
clicking on the corresponding option in the Settings Dialog (see below):

n
CommandLine -
El Contents
TestFiles Test
B remne . L
CacheObjects False
Lommandinterse 10U
IterationsCount 1
ObjectLookupatl 150
ObjectLookupdt 1
E Recording
BasibfuG awadill Ealea S
CacheObjects
Remember log=tad shincbe sed b by re-uge
them for speec ‘g_cacheObjects|
Other variables include:
o g_scriptPath
* g_reportPath
e g_objectsPath
* g_configPath
Exit Code
e 0O indicates a pass
¢ 1 indicates failure
See Also
o Settings Dialog
Object Locator opjPrevioUEiNe

Purpose

Object locators are created during Recording/Learning and used during Playback to identify learned objects and simulated objects. There are four types of locators:

o Location: This locator uses the object's index relative to encapsulating objects for identification. The location is stored as a period separated list of indexes. For instance, 1.2.3 would be "the third
object in the second object in the first object." The name, class, and role of the object are also stored.

* LocationPath: This locator remembers name, class, and role property information for the object and all of its encapsulating objects.

¢ LocationRect: This locator stores screen coordinates.

« Ordinal: This locator creates an array of object name/object class combinations. Each object is assigned an index in the array.

Usage

The locator for each object is specified in saved_script_objects in <scriptname>.objects.js your test script. Locator information is highlighted in the simulated object example below:

0bj10: {"version":0, "object_type":"SeSSimulated", "object_name
"object_class":"MSPaintApp", "object_role":"ROLE_SYSTEM WINDOW",
"object_text":"regex:.* - Paint",

"locations": [{"locator_name":"Location","location":{"location":"",
"window_name":"regex:.* - Paint","window_class":"MSPaintApp"}}]}

regex:.* - Paint",

Locator Parameters
If a piece of information in the locator matches a piece of object info (object_name, object_class, object_role, object_text) then it is stored in the locator as "param:<object_info>". For example:

"object_name": "param:object_name",
"object_class": "param:object_class",
"object_role": "param:object_role",

Over-riding Locator Parameters
You can over-ride the information used to locate your object at runtime. Normally, to refer to an object, you use the SeS function:

SeS('0bj9')
To override locator parameters, specify the new value in the function call. In the following example, we over-ride the object_name parameter for object 9:

SeS('0bj9', {object_name:"regex:.*"})

You may want to change a parameter value for every locator/object in the program. For instance, perhaps the url of the webpage has changed. Use the global variable g_locatorparams as in the
following example:

function Test ()

{

/1 us riding
Ses ('0bjl', {ur }) .DoAction () ;
SeS('0bj2', {url:"http://newaddr/"}).DoAction();

// Bnd this is equiv
g_locatorparams["url"]
SeS ("Obj1") .DoAction () ;
SeS("Obj2") .DoAction () ;

to above
"http://newaddr/";

9/16/2014 Page 34 of 105

See Also

e Obiject Learnin

e Playback
Automated Reporting Top Previous Next
Purpose

Each time you playback a test, Rapise automatically generates a report detailing the steps of the test, the data values used, and the outcome of each step.

Usage
Execute your test using the instructions here. When the test is complete, the Report Tab will appear in the Ribbon, and a report file (ending in .trp) will open in the Content View. It will look like this:

The first row (with a white background) is used for Report Filtering. The rows below that each represent a step in the test. The rows with green text represent success; the rows with red text represent
failure. You can reposition the columns by dragging and dropping the column names.

The Columns

#: For displaying icons.

Name: The test name.

Start: The time the test step began executing.

Type: Can be one of the following values: Test; Assert; Message.

Comment: Assertions and messages have associated comments. They are displayed here.

.
.
.
.
.
« Status: Whether the step passed, failed, or was merely informational.

Drag a column header here...

Use to order by the values in the chosen column. The result of dragging the Status column over looks like this:

You can expand each item to see the corresponding report rows:

Drag the Status icon back to undo the sort:

See Also

o Report Filtering
« The report output file is specified in the Settings Dialog (Settings > ReportPath).
e The Report tab of the Ribbon is used to alter the report layout.

Writing to the Report Top Previous Next
Purpose
You can write to individual columns, create columns, and add data to the report.

Usage

Writing to and Creating a Column
Use Tester.PushReportAttribute or Tester.SetReportAttribute to set values in specific rows. Tester.PopReportAttribute reverses the effect of Tester.PushReportAttribute:

PushReportAttribute
Tester.PushReportAttribute (columnName, value);

...some test steps... //the T
/

in their

9/16/2014 Page 35 of 105

Tester.PushReportAttribute (columnName, valueZ2);

...some test steps...

Tester.PopReportAttribute (columnName) ; //test steps proceeding this will be
If columnName does not exist, it will be added to the report.

SetReportAttribute
Tester.SetReportAttribute (columnName, value);
If columnName does not exist, it will be added to the report. Column columnName will be populated with value for rows created after this function call (unless specified otherwise).

Adding Data
Data must be associated with an Assert row or a Message row.

Tester.Assert (description, expression, data, columnValuePairs)
Tester.Message (description, data, columnValuePairs)

o description is a string.

* expression is the Boolean expression that the assertion tests.

« data is an array of data objects. Each data element is written to its own row below the assert/message row with which it is associated. Data can be text, a link, or an image. The following is an
array with text, link, and image data.

[new SeSReportText (text),
new SeSReportLink (urlString, linkText),
new SeSReportImage (ImagelWrapperObject, imageDescription)
1
« columnValuePairs is an object with key/value pairs. Column names are the keys. If the specified column does not exist, it will be created. Ex:
{requirement: "Reql.2.3", paragraph: "12.5"}

See Also

e Automated Reporting
* The test samples include a sample about reporting (Reporting.sstest)

Report Filtering Top Previous Next

Purpose
Report Filtering lets you specify criteria to filter your view of the test execution report. Rows that do not match your criteria are hidden.

Usage

You can filter the report view while the file is open. Directly above the first row of the report, there is a row of filter cells. Each one has a matching criteria button , a text-box to specify a filter value, a

drop-down menu with predefined filter values, and a clear button i :

Matching Criteria
Matching criteria determine how to compare the filter string value you input with the values in the report. You can select from 16 matching criteria. Press the button marked A above the column you
are filtering to see the possible criteria:

e Start Type
= a -

|&| Starts with ~ psert
[®] Contains sert
[Al Ends with sert
[&] Does not start with ot

[Does not contain cert
&4 Does not end with =lksert
== Does not match <t

Mot Like v leart

Predefined Filter Values
If we expand the filter cell's drop-down menu, we will see a list of predefined filtering options:

ent Status | Iter
Bl | -
(Custom) 0
(Blanks)
(NonBlanks

=1

Fail

(=T]

Pass

9/16/2014 Page 36 of 105

e (Custom): This option has to do with the next section Custom Filter Options.

o (Blanks): Matches all rows where the value for this column is blank.

« (NonBlanks): Matches all rows there the value for this column is not blank.

« All other predefined values are copied from cells in the column you are filtering.

Custom Filter Option
To create a filter with multiple matching criteria and filter values, select (Custom) from the filter cell's drop-down menu. The Enter filter criteria for... Dialog will open. Instructions for how to use it are
here.

nent Status | Ite
Bl & =
(Custom) 0
(Blanks) 0
(MonBlanks 0
Fail 0

Pass 0

Undo Filtering
To undo filtering for a particular column, press the clear button for that column:

Status

Pass

Pass 0

See Also

* Automated Reporting
o Enter filter criteria for... Dialo

Scri pting Top Previous Next

Purpose
There are three reasons to script with Rapise:

1. To modify a recorded test to increase coverage, add assert statements, or make the test data-driven.
2. To extend recording functionality by defining your own objects, actions, and libraries.
3. To customize the Rapise Engine.

Usage

Rapise scripts are written in JavaScript (Microsoft JScript). You can run and debug your script using the full featured Internal Debugger. Rapise includes a testing AP, with methods for manipulating
images, spreadsheets, common GUI widgets, and more.

See Also
e Learn about MS JScript HERE.

Understanding the Script Top Previous Next

Purpose
When you create a new test in Rapise, four files are created:

<TestName>.sstest ? the test meta-data

<TestName>.js ? the test script file

<TestName>.objects.js ? the file that contains recorded objects.
<TestName>.user.js ? the file that contains user defined functions.

where <TestName> is the name of your Test.

e o o o

You can have as many javascript files in your test directory as you like, but <TestName>.js is the test script (unless you specify otherwise in the Settings Dialog). When you record, your interactions are
written to <TestName>.js and objects are written to <TestName>.objects.js; when you Playback the test, <TestName> js is the script that will run. All Rapise test scripts must have the same basic
structure.

Usage
If you are going to modify the script, or create a test script from scratch, you will need to know the test script structure:

Basic Script
The Recording tool creates a Rapise Script with three sections:

N

. <TestName>.js: A Test() function
//##EHE#EEEE Script Steps ###H##HFFEFEEEEE
function Test ()

{
//script logic
}

2. <TestName>.js: A list of required libraries:
g_load_libraries=["Generic"l; // This

load_libraries

neric library

«

<TestName>.objects.js A list of learned objects in saved_script_objects.
var saved_script_objects={
//1list of ob s used in this script ?

All Scripts must have the above three sections.

Full script
The following functions are also recognized by Rapise and may be present in the test script. Put these functions either in <TestName>.js or <TestName>.user.js.

o Testlnit() : This function is called once before script playback. It should be used to initialize script-wide data (counters, open datasets, etc).

9/16/2014 Page 37 of 105

« TestFinish() : This function is called once after test execution. It should be used to release resources (data sets, spreadsheets). TestFinish() is a good place to post-process Reports. It may also
be used as an integration point with external test management or bug tracking systems.

e TestPrepare() : For advanced users; TestPrepare() is called before recording and before playback. It may be used to properly initialize libraries.

See Also
To specify a different test script, see the Settings Dialog. The test script is specified by Settings > ScriptPath.

Naming Conventions Top Previous Next

Purpose

The Rapise engine and API follow some simple naming conventions.

Usage
You will find descriptions of the naming conventions below. Note: italicized text represents placeholders.

e SeS<xxx> ? public functions for user
* Do<Action> ? action implementations
.
.

s and _ ? private functions and objects
g_<varname> ? system global data.

Defining Functions Top Previous Next

Purpose

The Rapise test script is in Javascript. You may define as many Javascript functions as you would like to call from your test script.

Usage

There are two ways to maintain additional functions: (1) Inside your test script and (2) in an external file.

Inside your Test Script
Define the function inside of one of the following functions: Test(), Testlnit(), TestFinish(), or TestPrepare(). The Script Recorder will erase code placed outside of these functions.

Inside *.user.js File
It is recommended to put all user functions into <testname>.user. js file available in any test from its creation.

Test Files b
=} Test
=1} scripts

MyTestl)s

MyTestl.objects js
MyTestl userjs

TestFiles | Settings Objedt Tree

This file is automatically attached into every script. All variables and functions defined in it may be used in the test. User-defined functions are also available under the "User Functions" node in the
Object Tree:

In an External File
You can define your function in another file and include it.

For example:
function Test ()
{

is defined de the "Test" function

1 Withdraw (amount)

Log ("Start Withdraw of:"+amount);
// Withdraw logic is here

)

Withdraw(12.34);

s" to get at function
val (g_helper.Include (Global.GetFullPath ("UtilityFunctions.js")));
// Deposit is defined in "UtilityFunctions.js"

9/16/2014 Page 38 0f 105

Deposit (56.78) ;

See Also
e To learn more about what the Script Recorder will change in your test script, see Multiple Recordings.

Global Variables Top Previous Next

Purpose

Global variables are variables that can be accessed anywhere in the script. There are restrictions (specific to Rapise) as to where they may be placed in the test script. These restrictions do not apply to
any additional script files you write and then call from your test script.

Usage
Define your global variables in Testinit(). Because Rapise uses javascript, you can initialize global variables inside of functions. See the sample Testlnit() below.
function TestInit ()
{
number_of_visited links = 0; //This global
var local_var = 5; //This var nit function

}

The keyword var gives variables local scope. A variable initialized without the keyword var will have global scope.

The Script Recorder knows about the following functions: Test(), TestInit(), TestPrepare(), and TestFinish(). Do not declare global variables outside of one of the preceding four functions. The Script
Recorder alters the script each time it is run, and may erase your changes.

See Also

e See Making Multiple Recordings for details on what effect the script recorder will have on your test script.
o For details on the structure of the test script, see Understanding the Script.

Including other Files Top Previous Next

Purpose
The eval keyword lets you use external functions and data structures in your test script; eval is a javascript reserved word.

Usage
See the example below:

function Test ()
{

eval (g_helper.Include (Global.GetFullPath ("myfunctions.js")));
}

See Also

e Understanding the Script

Regular Expressions Top Previous Next
Purpose

A regular expression is a sequence of characters that describes how to construct a set of strings. It is composed of character literals and special characters. Each character literal represents one single
character (such as "a", "b", "C", "1"). The special characters can represent a character, many characters, or a choice about how to select characters.

Special Characters:

Char Description Examples

? Combines with whatever character/sub- a? describes the set:
expression precedes it to represent 0 or 1 ™ "a"
occurrences of that character/sub-expression. ’

* Combines with whatever character/sub- a* describes the set:
expression precedes it to represent 0 or more {™ "a" "aa", "aaa’, "aaaa", "aaaaa", "aaaaa", ..}
occurrences of that character/sub-expression. Y ’ ’ ! ! !

+ Combines with whatever character/sub- a+ describes the set:
expression precedes it to represent 1 or more {"a", "aa", "aaa", "aaaa’, "acaaa”, "aaaaa", ...}

occurrences of that character/sub-expression.

{n,m}

A string and regular expression match if the string is an element of the set described by the regular expression.

Any arbitrary character.

Denotes a choice between two strings

Denotes a sub-expression.

Denotes one character chosen from all the
characters with the brackets. You can use a
hyphen to denote a range.

Quantifier expression. Meaning: "Between n
and m occurrences of whatever sub-expression
or character precedes."

The beginning of a string.

The end of a string.

Precedes a special character to take away any
special meaning.

9/16/2014

.* describes the set of all possible strings.
ab|ba describes the set:

"ab", "ba"}

(abc)?d describes the set:

{"abed" , "d"}

[abcde] describes the set:

fa", "o, e, d, e

[A-Z] describes the set of all one-character,
alphabetic, capitalized, strings. {"A", "B", "C", ...,
"z"

(abc){1,2} describes the set:

{"abc", "abcabc"}

Aa.* matches all strings that begin with an a.
.*a$ matches all strings that end with an a.

[\W\$\-\+*] represents the set:
[\, g, e

Page 39 of 105

Usage

In Rapise, you must prepend regular expressions with the string "regex:". So the regular expression describing all strings would be: regex: .*

There are three uses for regular expressions in Rapise: (1) in Object Locators, (2) in action overriding code, (3) in Custom Libraries.

Assertions Top Previous Next

Purpose

An assert statement is a special Boolean condition that represents an assumption about program state at a particular point in test execution. When an assert is encountered, the condition is evaluated.
A value of False indicates a program error. In some languages, execution will halt if an assertion evaluates to False. In Rapise, the result is logged to the report with failed status, and execution
continues.

Create a Checkpoint
To create a checkpoint using an assertion, you will have to manually alter the test script (another way is to use the Verify Object Properties dialog during Recording):

1. Select a location in your script and a subset of application state to check.

N

. Query for the application state. For images, use the ImageWrapper class provided with Rapise. For object properties, Get<..> methods. For example:

var xx = SeS(?0kButton?).GetX(); // X position of t

w

. Save the state. If you are creating an image checkpoint, you will want to save the image to a file. If you are looking at text data, you could use a database, spreadsheet or text file. The
SeSSpreadSheet class gives you access to excel spreadsheets.

IS

. Compare. Use the ImageWrapper class to compare images; use Spreadsheet to read and compare spreadsheet data.

o

. Write an Assert Statement. Make an appropriate call to Tester.Assert method. Besides a Boolean condition, pass additional data to be placed in the Report.

Read about Tester.Assert syntax in the Rapise Objects documentation part.

See Also

| I (! sstest

« The test samples include a Usi
« Verifying Object Properties
« Writing to the Report

Data Driven Testing Top Previous Next

Purpose

Data Driven Testing is an automated testing technique in which test case data is separated from test case logic. Each set of test case data consists of input values and a set of expected output values. Th
expected output values to determine whether the test passed.

You can perform data-driven testing either using an MS-Excel spreadsheet as the datasource or a relational database.
Using an MS-Excel Spreadsheet
The spreadsheet object is useful for implementing data-driven tests. It allows you to connect to, query, and read an excel spreadsheet from your test script. To create a data-driven test, you will:

1. Record a test. The exact inputs you use for the recording will not matter as much as your interactions with the objects. The following excerpt was recorded using www.google.com:
function Test()

tra in g
SeS('Objl') .DoSetText ("Inflectra”);
//Click on btnG

SeS('0Obj2'") .DoClick();

}
The actions recorded were: (1) Type Inflectra into the search box. (2) Press the Google Search button.

2. Parameterize the Test() function. The Test() function has all of the procedural logic for the test. Replace input values with variables. Encapsulate the logic in a nested function with one parameter for
we will parameterize the Test() function we created in step one:
function Test ()
{

function Logic(searchterm){ //our new function encapsulates the test logic

//Set Text u
Ses ('Objl')
//CLl n

searchterm

DoSetText (searchterm) //here hanged a hard-coded value into a variable

J¢ tnG
SeS('0bj2') .DoClick ()

}
Logic("Inflectra™) //don

to call your new functior

3. Create the test case data. In an excel spreadsheet, create a column for every variable in step two. Add columns for any expected output values you wish to verify. Each row is a test case.

In our google example, we only have one input value (searchterm) and we're not comparing any expected output values, so we will only need one column in our spreadsheet. Save the spreadsheet in tI
A

SpiraTest
SpiraPlan
SpiraTeam

4 Rapise
EREmoteLaunch

WM

4. Add spreadsheet to the test
Use "Add File(s)..." to add a spreadsheet to the test files:

9/16/2014 Page 40 of 105

Test Files 7 ’m
4 [T
= Create File... 4
b Create Spreadsheet...
Add File(s)... \

New Group...

Reload
Create Sub-Test..,

Removwe from Test Del

Remove All from Disk
o

5. Attach Spreadsheet object to searchterms.xls

Drag the 'searchterms.xls' from files tree into appropriate place in your test source:
llEsS .Fi.les ki g Start Page Seatchterms,js*
B Test : Seg('chill).DoSetText
- soripts /#Click on htnG
el ('0bjz').DoClick()

Logic("Inflectra™) //dc

4| [

Dutput
Test Files | Settings Ohject Tr...

6. Use Spreadsheet to access the test case data.

In our example, we use a spreadsheet oObject and run the test logic once for every row.
function Test ()
{
function Logic(searchterm) {
//Set Text searchterm in g
SeS('Objl') .DoSetText (searchterm)

k on btnG
SeS('0bj2') .DoClick ()
}

Spreadsheet.DoAttach ('searchterms.xls', 'Sheetl');

// Go through all rows

while (Spreadsheet.DoSequential ())

{
// Read cell value from column 0
var term = Spreadsheet.GetCell(0);
// Pass it into Logic function

Logic (term) ;

Using a Relational Database
Rapise comes with the Database query global object that allows you to send SQL queries to a database and then iterate through the results. The process for creating such a data-driven test is as follows:

1. Record a test. The exact inputs you use for the recording will not matter as much as your interactions with the objects. The following excerpt was recorded using www.google.com:
function Test ()
{

//Set Text Inflectra in gq
SeS('0Objl') .DoSetText ("Inflectra");
//Click on btnG

SeS('0Obj2') .DoClick () ;

)
The actions recorded were: (1) Type Inflectra into the search box. (2) Press the Google Search button.

2. Parameterize the Test() function. The Test() function has all of the procedural logic for the test. Replace input values with variables. Encapsulate the logic in a nested function with one parameter for
we will parameterize the Test() function we created in step one:
function Test ()
{
function Logic(searchterm){ //our new function encapsulates the test logic
//Set Text using searchterm
SeS('Objl') .DoSetText (searchterm) //here we changed a hard-coded value into a variable
//Click on btnG
SeS('Obj2') .DoClick ()
)

Logic("Inflectra") //don't forget to call your new function

3. Use Database to connect the test case data.. This assumes that you already have an ODBC or OLE DB compatible relational database that contains the necessary test data.
You drag the 'Database’ global object into the script editor:

9/16/2014 Page 41 of 105

and then use:

Database.DoAttach() - to make the database connection and specify the SQL query
Database.GetRowCount() - to verify that there is data

Database.DoSequential() - to loop through the dataset row by row
Database.GetValue() - to get that row's data

Here is an example of the code needed to loop through a list of records (taken from the SpiraTest database as an example) and call our Logic() parameterized function with the appropriate test data:
var success = Database.DoAttach ('Provider=SQLOLEDB.1l;Integrated Security=SSPI;Persist Security Info=False;Initial Catalog=SpiraTest;Data Source=.' ,
Tester .Assert ('Successfully Connected', success);
var count = Database.GetRowCount () ;

Tester.Message (count) ;

//Loop through the rows

while (Database.DoSequential())
{

var projectId = Database.GetValue ("PROJECT ID");
var name = Database.GetValue ("NAME") ;

var description = Database.GetValue ("DESCRIPTION") ;
Logic (name) ;

}
Customizable Engine Top Previous Next

Purpose
The source for most of the Rapise implementation is available for you to read and modify. You may find it useful to look at if you decide to create a library customized for your application.

Usage
Unless you specified otherwise, Rapise will be installed at
C:\Program Files\Inflectra\Rapise\

The source code is in the Engine directory. You'll find the recording/learning libraries in EnginelLib. The core logic is in four files: SeSAction.js; SeSBehavior.js; SeSCommon.js; SeSConfig.js.

If you plan to make changes to the Rapise Engine, we recommend you use a version control system capable of reconciling code conflicts, as we do not support user customizations. However, let us
know if you feel that your customizations are generally useful; if we decide to integrate them into Rapise, we will support them.

See Also

e Custom Libraries
e Scripting

Javascript IDE Top Previous Next

Purpose
The Javascript IDE includes an editor and a debugger.

Usage
Simply open a script to view the editing features; create a breakpoint and play the script to view the debugging features.

See Also
e Learn about MS Jscript HERE.

Internal Debugger Top Previous Next

Purpose
The Internal Debugger provides Persistent Breakpoints, Control Execution, a Watch View, a Variable/Call Stack View, and Tooltips.

Usage
To use the internal debugger, you must first install Microsoft Script Debugger .

You can choose the Internal Debugger on the Rapise Ribbon (Test tab > Debugging menu).

Ne Debugging -
Level 1 (Minimal) -
Debugging

The top drop-down menu has four options. Choose the Run with Internal Debugger option.

When you Playback your test script with a breakpoint, the debugging related menus and views will appear:

e The Debugging tab of the Ribbon
e The Watch View and Variable/Call Stack View

The following screenshot shows the placement of Debugging related functionality in Rapise:

9/16/2014 Page 42 of 105

In the screenshot above, you can see the Debugger buttons available in the ribbon at the top of the screen as well as the Variables and Watch sections in the lower pane.

See Also

* You can use the External Debugger to debug your scripts as well.

Top Previous Next

Tooltips

Purpose
Tooltips let you view a variable's value during debugging.

Usage

1. Put a breakpoint in the script at or near where you wish to investigate
2. Mouse over variables as you advance through the script. A small box will popup, displaying the variables' values:

See Also

e Breakpoints
o Internal Debugger

Top Previous Next

Control Execution

Purpose
Control Execution allows you to manually direct the execution of the script.

Usage

1. Set a Breakpoint where you want to take control of the execution
2. Use the buttons on the Debugger tab of the Ribbon to step through the script.

Test Edit

b Run L= Step Over

9E Stepln @ Stop Debugger

== Step Out D Break
Debugger

See Also

e Ribbon: Debugger

Breakpoints Top Previous Next

Purpose
Breakpoints stop execution of the test at a specific line in the script. They allow you to investigate program state, and trace execution flow.

Usage
To set a Breakpoint:

1. Open the script you would like to debug in the Source Editor.
2. Place the cursor at the line where you want a breakpoint.
3. Press F9 or the Break button on the Ribbon (Debugger tab).

9/16/2014 Page 43 of 105

File Test Edit Debug
b Run L= Step Over
5= Stepln @ Stop Debugger
== Step Out D Break
Debugger

4. If the Debugger tab is not visible, you can also use the Toggle Breakpoint option in the Edit tab:

See Also

* Ribbon: Debu
* Control Execution

External Debugger Top Previous Next

Purpose
When you enable the External Debugger, the Microsoft Script Debugger is used to debug your script. Rapise provides an Internal Debugger as well.

Usage
You can enable the External Debugger on the Rapise Ribbon (Test tab > Debugging menu).
Ne Debugging -
Level 1 (Minimal) -
Debugging

The top drop-down menu has four options:

* No Debugging

« Run with Internal Debugger: See Internal Debugger for more info.

« Run with External Debugger: Open the Microsoft Debugger to run the script.

« Run External Debugger on Error: Open the Microsoft Debugger only if an error occurs.

When you choose the Run with External Debugger option, Microsoft Script Debugger will open as soon as you begin Playback of your script. The debugger will pause on the line
WScript.Echo("SeS Player Starting...")

and display an error message. There is no actual error; you can begin debugging. Note, however, that Rapise is mostly written in javascript, and the Debugger will step through Rapise implementation
as well as your test script.

See Also

* Internal Debu
e For instructions on using the Microsoft Script Debugger, try this link: http://msdn.microsoft.com/en-us/library/ms532989.aspx

Verbosity Levels Top Previous Next

Purpose
The Verbosity Level affects the amount of information written to the Output View.

Usage
The Verbosity Level is set on the Ribbon (Test tab > Debugging menu). See below:

9/16/2014 Page 44 of 105

See Also
e Ribbon: Test Tab

Syntax Highlighting Top Previous Next
Purpose

With Syntax Highlighting, words in a program are displayed so as to immediately indicate their function. Reserved words, variables, literals, and comments may be differentiated by color, boldness,
underline etc. Syntax Highlighting makes programs easier to read and modify.

Usage
Every javascript file opened in Rapise will display with Syntax Highlighting:
S/#%E44%58484 Script Stops FEFEREEFEEREES
function Test()
=R
var success = Database.DoAttach('Pr L 1;Integrated S
Tester.Assert (' Successfully Connected', success
wvar count = Database.GetRowCount():
Tester.Message (count) ;
//Loop through the rows
while (Database.DoSequential())
Fl i
wvar projectId = Dactabase.GetValue ("PROJECT_ID");
var name = Database.GetValue(" E");
var description = Database.GetWValue ("DESCRIPTICH"):
See Also

e Source Editor
Code Folding Top Previous Next

Purpose
Code Folding allows you to hide or show blocks of code. These blocks have syntactic meaning, such as a function body, a class declaration, a loop, or a comment.

Usage

Every javascript file opened in Rapise will display with hide and show buttons to the top left of their corresponding block. In the following screenshot, hide buttons are highlighted with green boxes; show
buttons are highlighted with purple boxes:

See Also

e Source Editor
Syntax checking Top Previous Next

Purpose
An editor performs Syntax Checking if it notifies the user of syntax errors in their program/script.

Usage
Rapise performs Syntax Checking as you type into the Source Editor. Messages regarding syntax errors can be found in the Warning View.

For example, you begin writing a function:

MyTest 1js* 3
function all{ 4
¥

< i 3

warnings I

C\Program Files\InflectratRapise\Bin\TermpiMyTestI\WyTestls (1,1): mismatched input)" expecting RPAREMN

9/16/2014 Page 45 of 105

We have a typo here. We used ?}? instead of ?)?. Once the error is corrected, the warning view clears automatically:

[Z] myTest 1js
[Ffunction ai){
Ly

] [

Warnings

See Also

e Source Editor
Code Completion Top Previous Next

Purpose

Rapise provides Code Completion for class, method and field names.

Usage

Begin typing a class, method, or field name. Press CTRL+space to open a list of possible completions.

See Also

e Source Editor
Unit Testing Top Previous Next

Purpose

Unit Testing involves testing individual units of a piece of software to make sure they act as intended. The units tested are usually functions or class methods.

Usage
There are five ways that Rapise can help you Unit Test:

1. Rapise methods support testing objects and methods in DLLs.

2. Rapise can test ActiveX objects and their methods through their COM Interface.

3. If you choose to write your Unit tests in a third-party tool, Rapise has a Command Line interface where you can access its functionality.
4. Test results are written to a TAP file, which allows integration with Unit Testing frameworks.

5. Rapise tests can be invoked from MbUnit and NUnit tests.

DLL Testing Top Previous Next

Purpose

You can create objects and invoke methods from both managed and unmanaged dlls.

Usage

Rapise provides API calls to work with managed DLLs. The Windows object WScript can be used with unmanaged DLLs.

Managed DLLs

e Util.InvokeMember: Invoke a class method in a managed DLL.
o Util.CreateClassinstance: Creates an instance of a class in a managed DLL.
o Util.SetFieldValue: Sets a field value in an object created with CreateClassInstance.

Unmanaged DLLs

« WScript.CreateObject("DynamicWrapper"): Create a DynamicWrapper object. The Register and ShellExecute methods of the DynamicWrapper object can be used to invoke DLL methods as in the
following example:

var UserWrap = WScript.CreateObject ("DynamicWrapper");

UserWrap.Register ("shell32.d11", "ShellExecute", "I=hssssl", "f=s", "r=1");
UserWrap.Register ("USER32.DLL", "MessageBoxA", "I=HsSu", "f=s", "R=1");
UserWrap.MessageBoxA(null, "" + elapsed, "Time Elapsed:", 0x30);

Test Samples

There is a Samples folder in your Rapise directory. There are two_test samples that illustrate working with DLLs:
e UsingDLLHandlerManaged
¢ UsingDLLHandlerUnManaged

See Also

* For more information on the WScript object, see: http:/msdn.microsoft.com/en-us/library/at5ydy31(VS.85).aspx

COM Testing Support Top Previous Next

Purpose

Microsoft's Component Object Model (COM) is a standard for communication between separately engineered software components (source). Any object with a COM interface can be created and used
remotely.

9/16/2014 Page 46 of 105

Usage

Creating a COM Object
You can create a COM object using Windows' ActiveXObject class. Once the object is created, method invocation is the same as with any other object in your program. The methods available will
depend on the object's COM interface. The following example shows how to create an instance of the Word application and open a file.

var doc = new ActiveXObject ("Word.Application");
doc.Documents . Open (wordFileName) ;

Test Samples

There are several test samples that show how to Unit Test application modules via COM interface:
o UsingMSWord

o UsingMSExcel

e UsingMSAccess

See Also

o Learn more about COM HERE.
e Learn more about ActiveXObject HERE.

Custom Strings Top Previous Next

Purpose
Custom Strings allow you to associate meta data with your test. Each custom string has a name and a value. The value can be retrieved using the name.

Usage

Adding a Custom String

1. Open the NameValue Collection Editor dialog. Instructions are HERE.
2. Press the Add button.

3. Fill in @ name and value for the custom string.

4. Press OK. The dialog will close.

Retrieving a Custom String value

Use the GetCustomString() method to retrieve a custom string's value. See the example below:
var factory = new ActiveXObject ("Rapise.Test.Test");

var test = factory.LoadFromFile(Global.GetFullPath("UsingCustomStrings.sstest"));

var BugID = test.GetCustomString("BugID");

var TestID = test.GetCustomString("TestID");

See Also

* NameValue Collection Editor Dialo
e There is a sample test called UsingCustomStrings.

MbUnit Top Previous Next

Purpose
SeSMbUnit.vsi is a visual studio installer packaged with Rapise. It facilitates calling Rapise tests from MbUnit tests.

Usage

Installation
¢ You will need Visual Studio, MbUnit 3, and Gallio to use SeSMbUnit. MbUnit is bundled with Gallio, which is available at www.gallio.org.

e To install SeSMbUnit, open the following directory:
C:\Program Files\Inflectra\Rapise\Extensions\UnitTesting\MBUnit\SeSMbUnit

* Double-click SeSMbUnit.vsi. The Visual Studio Content Installer will appear. Select the components for the language you will use and then click Next.

Syntax
Use both the MbUnit.Framework and the SeSMbUnit namespaces:

using MbUnit.Framework;
using SeSMbUnit;

MbUnit uses the class attribute [Test] to identify test methods. The corresponding attribute for SeSMbUnit is [SeSMbUnitTest(@"<path to .sstest>")]. Note that the SeSMbUnitTest attribute has a
parameter, the file-path to the test that will be invoked.

The following example uses a test method simply as a wrapper for calling an .sstest:

[SeSMbUnitTest (@™
public void TestIEandFirefox ()
{
int exitCode = SeSMbUnitHelper.TestExecute();
Assert.AreEqual (0, exitCode);
}

Templates
SeSMbUnit.vsi will install a template for Visual Studio called SeSMbUnitTests. The template includes the appropriate using statements and a blank test method. You can insert additional
SeSMbUnitTest methods by right-clicking in the editor in Visual Studio, and selecting Insert Snippet > SeSMbUnitTest. The following code will be added:

[SeSMbUnitTest (/*Insert path to
public void TestSeS ()
{
int exitCode = SeSMbUnitHelper.TestExecute();
Assert.AreEqual (0, exitCode);
}

e which must be run.*/)1

You'll need to specify the file-path.

Samples
There is a sample dIl you can run in MbUnit. From the Rapise directory, you'll find it at: Extensions\UnitTesting\MBUnit\Se SMbUnit\Se SSamplesMbUnit\bin\Debug\Se SSamplesMbUnit.dll

9/16/2014 Page 47 of 105

See Also

* MbUnit and related documentation can be found at www.mbunit.com

NUnit Top Previous Next

Purpose
SeSNUnit.vsi is a visual studio installer packaged with Rapise. It facilitates calling Rapise tests from NUnit tests.

Usage

Installation
e You will need Visual Studio and NUnit to use SeSNUnit. NUnit is available at http://www.nunit.org/index.php?p=download.

o To install SeSNUnit, open the following directory:
C:\Program Files\Inflectra\Rapise\Extensions\UnitTesting\NUnit\SeSNUnit

e Double-click SeSNUnit.vsi. The Visual Studio Content Installer will appear. Select the components for the language you will use and then click Next.

Syntax
Use both the NUnit.Framework and the SeSNUnit namespaces:

using NUnit.Framework;
using SeSNUnit;

NUnit uses the class attribute [Test] to identify test methods. The corresponding attribute for SeSNUnit is [SeSNUnitTest(@"<path to .sstest>")]. Note that the SeSNUnitTest attribute has a parameter,
the file-path to the test that will be invoked.

The following example uses a test method simply as a wrapper for calling an .sstest:

[SeSNUnitTest (@"T:\Samples\Crc
public void TestIEandFirefox ()
{
int exitCode = SeSNUnitHelper.TestExecute ();
Assert.AreEqual (0, exitCode);
}

Templates
SeSNUnit.vsi will install a template for Visual Studio called SeSNUnitTests. The template includes the appropriate using statements and a blank test method. You can insert additional SeSNUnitTest
methods by right-clicking in the editor in Visual Studio, and selecting Insert Snippet > SeSNUnitTest. The following code will be added:

[SeSNUnitTest (/*Insert path to .sstest file which must be run.*/)]
public void TestSeS ()
{

int exitCode = SeSNUnitHelper.TestExecute();

Assert.AreEqual (0, exitCode);
}

You'll need to specify the file-path.

Samples
There is a sample dll you can run in NUnit. From the Rapise directory, you'll find it at: Extensions\UnitTesting\NUnit\Se SNUnit\Se SSamplesNUnit\bin\Debug\Se SSamplesNUnit.dll

See Also
« NUnit and related documentation can be found at www.nunit.org

TAP Results Top Previous Next

Purpose
Rapise supports the Test Anything Protocol (TAP). TAP specifies communication between unit tests and testing frameworks, such as MbUnit or NUnit.

Usage
The results of a Rapise test are saved to a TAP file in the same directory as the test. Tap files have a .tap extension.

See Also

« More information about tap is available at the TAP wiki: www.testanything.org

o MbUnit

o NUnit

Web Service Testing Top Previous Next

What is a Web Service?

A Web service is a unit of managed code that can be remotely invoked using HTTP, that is, it can be activated using HTTP requests. So, Web Services allows you to expose the functionality of your
existing code over the network. Once it is exposed on the network, other application can use the functionality of your program.

Web Services allows different applications to talk to each other and share data and services among themselves. Other applications can also use the services of the web services. For example VB
or .NET application can talk to java web services and vice versa. So, Web services is used to make the application platform and technology independent.
What types of Web Service are There?

There are two broad classes of web service:

1. SOAP - These web services make use of the Web Service Definition Language (WDSL) and communicate using HTTP POST requests. They are essentially a serialization of RPC object calls into
XML that can then be passed to the web service. The XML passed to the SOAP web services needs to match the format specified in the WSDL. SOAP web services are fully self-descripting, so
most clients do not directly work with the SOAP XML language, but instead use a client-side proxy generator that creates client object representations of the web service (e.g. Java, .NET objects).
The web service consumers interact with these language-specific representations of the SOAP web service.

2. REST - A RESTful web API (also called a RESTful web service) is a web APl implemented using HTTP and REST principles. Unlike SOAP-based web services, there is no "official" standard for
RESTful web APIs. This is because REST is an architectural style, unlike SOAP, which is a protocol. Typically REST web services expose their operations as a series of unique "resources" which
correspond to a specific URL. Each of the standard HTTP methods (POST, GET, PUT and DELETE) then maps into the four basic CRUD (Create, Read, Update and Delete) operations on each
resource. REST web services can use different data serialization methods (XML, JSON, RSS, etc.).

Why do we Test Web Services?
The purpose of Web Service Testing is to verify that all of the Application Programming Interfaces (APIs) exposed by your application operate as expected. In some ways they are similar to unit tests in

9/16/2014 Page 48 of 105

that they test specific pieces of code rather than user interface objects.

Unlike simple unit tests however, web services tests will normally need to be developed for each of the supported versions of the API so that when a new version of a product comes out, you can
regression test the latest version of the API and all previous versions. This ensures that legacy clients using the older version of the API don't need to make any changes.

Also, unlike unit tests, web services are being called across a network using the HTTP/HTTPS protocol rather than simply calling code that is resident on the same system as the test script. In that
sense, they are similar to testing web sites.

Finally, in situations where you have an AJAX web application, as well as testing the front-end user interface using the appropriate Ul library, you may need to test the web service that is providing the
data to the user interface at the same time. In these situations you have a hybrid, web user interface and web service test.

Testing Web Services with Rapise
Rapise contains a built-in web service module that can currently test the following types of web service:

1. REST Web Services - Rapise contains a built-in REST definition builder and object library that allows you to prototype out your REST web service requests, inspect the returned HTTP headers
and HTTP response body and then covert into a parameterized set of Rapise objects that can be scripted against in the main Rapise JavaScript editor.

Testing REST Web Services Top Previous Next

What is REST and what is a RESTful web service?

REpresentational State Transfer (REST) is a style of software architecture for distributed systems such as the World Wide Web. REST has emerged as a web API| design model that offers greater
simplicity over other web service protocols such as SOAP and XML-RPC.

A RESTful web API (also called a RESTful web service) is a web APl implemented using HTTP and REST principles. Unlike SOAP-based web services, there is no "official" standard for RESTful web
APIs. This is because REST is an architectural style, unlike SOAP, which is a protocol.

How does Rapise test REST web services?
Creating a REST web service test in Rapise consists of the following steps:
1. Using the REST definition builder to create the various REST web service requests and verify that they return the expected data in the expected format.

2. Parameterizing these REST web service requests into reusable templates and saving as Rapise learned objects.
3. Writing the test script in Javascript that uses the learned Rapise web service objects.

Rapise REST Definition Builder

When you add a web service to your Rapise test project, you get a new REST definition file (.rest) that will store all of your prototyped requests against a specific REST web service. The various REST
requests are then created in the REST definition builder:

Each REST request can then include the following items:

Method - the type of HTTP request being made (GET, POST, PUT, DELETE, etc.)

URL - the URL of the web service request with any parameter tokens included (e.g. {session_id} in our example above)
Credentials - Any HTTP Basic Authentication Headers

Headers - Any other HTTP headers (both standard and custom)

Parameters - Any parameters that have been defined in the URL that will be called from the Rapise test script.

Body - The body of the request (for POST and PUT requests). This can be in any text-serialized format such as XML or JSON.

When you execute the request, it will return back the HTTP response headers and if it recognizes the MIME content-type as either XML or JSON, it will format it to make it more readable by the tester:

9/16/2014 Page 49 of 105

REST Request

Name: Get_Session

Method: GET ~ hitplfunww libraryinformationsystem org/Services/RestService svo/session -

Credentials: librarizn IE
Eody: 'G;)

Respense Header | Response Body | Formatted XML
<string xmins="htip://schemas.microsoft.com/2003/10/Senzlization/ >e4beeb25-Tdcof-4ec1-9391-2deb 370924 7e </siring > .

Once you have finished with your prototyping of the web service test operations, you can then save the request definitions and use the 'Update Object Tree' option to populate the main Rapise Object
Tree.

Web Service Object Recognition
Each of the REST web service requests that has been prototyped in the REST definition editor is converted by Rapise into a scriptable object:

Tree Tee
|57 | id [-n-]icm |57 | i [-n-]icH
= 'J Object Tree ChUsers\adamsandman\D|| | & IJ Object Tree ChUsers\adamsandma o
=+ =21 Ubraninformationsystem
-0 Add_Book oo d
=0 Get_Books = DoExecute 1
-0 Get_Session @+ GetCredential
1 Global @+ GetMethod
0} User Functions @+ GetName
“ar User Variables @+ GetParameters
@+ GetRequestBodyObject
g+ GetReguestBodyText
@+ GetRequestHeaders
-+ GetResponseBodyObjec
@+ GetResponseBodyText
@+ GatRecnnnceHearars
i 3 K i

1 >
Test Files | Settings -Object Tree Object Tree

Each of the REST service objects in the tree has operations designed to let you call the method and access the returned body either in its raw text format, or if it's a web service that returns data in
JSON format, it will be able to send/receive data as native JavaScript objects.

Rapise provides you with access to the following attributes of the HTTP request before/after the request has been executed:

e Request:
o Method
o Ur
o Headers (inc. authentication)
o Body
e Response:
o Headers
o Body

Rapise REST Test Scripts
Once all the REST operations have been defined and saved as Rapise learned objects, you can call the REST operations from within your Rapise test scripts:

function Test()
=R
;stem Get_ Session').DoExecute (null);
var sessionId = Se5('Li nformationSystem Get_Session').GetResponseBodyObject()
Tester.Message (sessionld) ;
SeS('LibraryInformationSystem Get Books').DoExecute({"session_id":sessionld}):
wvar books = Se5('Lib vInformationSystem Get Books').GetResponseBodyCbject () ;
Tester.AssertEqual ('Book count matches', 14, books.length):
var newBook = {};
newbBook.Name = 'R C stmas Carol';
newbBook.Authorld = 2;
newBook.Genreld = 3;
i i tem Add Book').SetRequestBodyCbject (newBook)
tem Add Book').DoExecute({"session_id":sessionld});
;stem Get Books').DoExecute({"session id":sessionld});
formati System Get_Books').GetResponseBodyObject ()
Tester.AssertEqual ("Book count matches', 15, books.length);
-}

As well as simply calling the DoExecute() method of each REST web service object to call the previously defined operation, you can use the various properties on the REST service object to send
through specific parameter values, add/remove headers, change the authenticated user, change the request body as well as inspect all of the attributes in the request and response.

This allows you unparalleled control over the web service request, with the ability to debug and diagnose web service issues in addition to being able to quickly call the learned operations.

Since the REST objects are just like any other Rapise object, you can have hybrid test scripts that call web service methods and also test GUI objects. This is very useful when you want to test how the
user interface changes in response to specific web service API interactions, or when you have a user interface that connects to the sever using a web service (for example with a JSON-based AJAX web
user interface).

9/16/2014 Page 50 of 105

Once you have created your REST web service test, you can use the standard Playback functionality in Rapise to execute your test and display the report:

E LibraryInformationSystem.rest ¥ Start Page m MyRestTestl_2013-06-19_14-49trp

Name Start 2 Type Status Comment Iteration
‘Bal o | 0 | | -
Starting scenario: Test 14:49:03.725 Message Info

Get_Session.DoExecute([null]) 14:49:04.334 Assert Pass Returned Value: true 0
c3d8dcd4-6125-427d-939a-0dd181b3ccel 14:45:04.334 Message Info 0
Get_Books.DoExecute([{"session_id""c3d8dcd4-6125-4 | 14:49:05.051 Assert Pass Returned Value: true 0
Book count matches 14:45:05.051 Assert Pass 0
Add_Book.DoExecute([{"session_id":"c3d8dcd4-6125-4 | 14:45:05.379 Assert Pass Returned Value: true 0
Get_Books.DoExecute([{"session_id":"c3d8dcd4-6125-4 | 14:45:05.597 Assert Pass Returned Value: true 0
Book count matches 14:49:05.597 Assert Pass 0
& » MyRestTestl 14:49:05.597 Test Pass Passed:6 Failed:0
i~ TestPass
@ Total:9 Pass:7 Fail:0 Info:2

SpiraTest Integration Top Previous Next

For more details on using SpiraTest with Rapise, please refer to the separate "Using SpiraTest with Rapise" guide.

Overview

SpiraTest is a web-based quality assurance and test management system with integrated release scheduling and defect tracking. SpiraTest includes the ability to execute manual tests, record the
results and log any associated defects. Note: SpiraTeam is an integrated ALM Suite that includes SpiraTest as part of its functionality, so wherever you see references to SpiraTest in this section, it
applies equally to SpiraTeam.

When you use SpiraTest with Rapise you get the ability to store your Rapise automated tests inside the central SpiraTest repository with full version control and test scheduling capabilities:

L p

You can record and create your test cases using Rapise, upload them to SpiraTest and then schedule the tests to be executed on multiple remote computers to execute the tests immediately or
according to a predefined schedule. The results are then reported back to SpiraTest where they are archived as part of the project. Also the test results can be used to update requirements' test
coverage and other key metrics in real-time.

Connecting to SpiraTest
The first thing you need to do is to configure the connection to SpiraTest. To do this, click on the Options button in the Tools section of the Rapise Test ribbon:

9/16/2014 Page 51 of 105

This will bring up the Options dialog box. Click on the Tools tab to bring up the settings related to the various Tools:

Click on the "Spira Connection Settings" button to bring up the dialog box that lets you configure the connection to SpiraTest:

Enter the URL, login and password that you use to connect to SpiraTest and then click the "Test" button to verify that the connection information is correct.

e The "Default Repository Path" is a folder that used to store local copies of the non-absolute repositories.
e The Token is the identifier of the current machine that Rapise is installed on. It needs to match the 'Token' name of the corresponding 'Automation Host' in SpiraTest.

You need to be running SpiraTest / SpiraTeam v4.0 or later to use the integration with Rapise.

Creating a Rapise test from a SpiraTest test case

To create a new Rapise test based on the manual test steps already defined in a SpiraTest test case, click on the “ tab in the top left of the application and from the File menu, choose the option
Create From Spira Manual Test. This will bring up the following dialog box:

1. Select the project that has our new test case. The list of test case folders will be displayed.
2. Expand the folders until you can see the desired test case:

9/16/2014 Page 52 of 105

Now click on the test case we previously created and you will see its test steps displayed:

Once you are satisfied that this is the correct test case, click the [Open] button and Rapise will display the normal "Create New Test" dialog box that lets you choose a name and location for this new
Rapise test.

Saving a Test to SpiraTest

To save the a Rapise test into SpiraTest you need to make sure that the following has been setup first:
1. You have a project created in SpiraTest to store the Rapise tests in. The Rapise tests will be stored in a repository located inside the Planning > Documents section of the project.
2. The user you will be connecting to SpiraTest with has the permissions to create new document folders.

3. You have created the Test Case in SpiraTest that the Rapise test will be associated with. This is important because without being associated to a SpiraTest Test Case, you will not be able to
schedule and execute the tests using SpiraTest and RapiseLauncher.

4. You have created an AutomationEngine in SpiraTest that has the token name "Rapise". This will be used to identify Rapise automation scripts inside SpiraTest.

Once you have setup SpiraTest accordingly, click on the Save to Spira icon in the File section of the Rapise Test ribbon:

That will bring up the Save to SpiraTest dialog box:

9/16/2014 Page 53 of 105

The first thing you will need to do is choose the SpiraTest project from the dropdown list. This will then update the list of test case folders displayed in the top pane of the dialog box.
Once you have chosen the desired project, you need to expand the test case folders in SpiraTest and choose the existing Test Case that you want to attach the Rapise test to:

When you expand the folders to display the list of contained test cases, it will display the name and ID of the test case together with an icon that indicates the type of test case:

1. AJ— Manual test case that has no automation script attached. (Repository Path will also be blank)
2. 1. Test case that has an existing Rapise test attached.
3. L]-Testcase that has a non-Rapise automation script attached.

If you are adding a new Rapise test, choose a test case that has icon (1) and doeesn't have an associated Repository path. If you are updating an existing test, choose a test case that has icon (2) and
the matching Repository path.

Note: test cases with icon type (3) cannot be used with Rapise for adding or updating scripts.
Once you have chosen the appropriate test case, click the [Save/Synchronize] button. That will bring up the Create New Repository dialog box:

This dialog box will let you know where the Rapise script will be stored in SpiraTest and also the location of the repository local directory used to store the 'working copy' of the Rapise test. Click [Create]
to confirm.

9/16/2014 Page 54 of 105

A dialog box will be displayed that lists all the files in the local working directory and shows which ones will be checked-in to SpiraTest. The system will filter out result and report files that shouldn't be
uploaded. You can change which files are filtered out and also selectively include/exclude files. Once you are happy with the list of files being checked-in, click the [OK] button:

The system will display the message that it's saving the files to the server:

If an error occurs during the save, a message box will be displayed, otherwise the dialog box will simply close.

Opening a Test from SpiraTest
To open a Rapise test from SpiraTest you need to make sure that the following has been setup first:

1. You have already configured the connection to the SpiraTest service (see the instructions at the top of this page).
2. The user you will be connecting to SpiraTest with has the permission to view the project that the tests are being stored in.

Once you have setup SpiraTest accordingly, click on the Open Test from Spira icon in the File section of the Rapise Test ribbon:

That will bring up the Open Test from SpiraTest dialog box:

The first thing you will need to do is choose the SpiraTest project from the dropdown list. Once you have done that, the system will display the list of test case folders in this project.
Once you have chosen the project, you need to expand the test case folders in SpiraTest and choose the existing Test Case that you want to open:

9/16/2014 Page 55 of 105

When you expand the folders to display the list of contained test cases, it will display the name of the associated Rapise test script associated with it (to the right). Choose a test case that has the
matching Rapise test case listed to the right of it (in the Repository Path column).

Note: Only test cases that have an attached Rapise test script will be displayed in this view.
Once you have chosen the appropriate test case, click the [Load/Synchronize] button to load the test case:

A dialog box will be displayed that lists all the files on the server which will be downloaded from SpiraTest. You can change which files are to be downloaded. Once you are happy with the list of files
being checked-out, click the [OK] button:

The system will display the message that it's downloading the files from the server. If an error occurs during the download, a message box will be displayed, otherwise the dialog box will simply close.
Viewing the SpiraTest Properties of a Test

To see which SpiraTest project and test case the current Rapise test is associated with, click on the Spira Properties icon in the File section of the Rapise Test ribbon. This will bring up the Spira
Properties dialog box:

This will display the name of the current Rapise test together with the name of the SpiraTest project, test folder and test case that this test is associated with.

If you would to save the current Rapise test into a new SpiraTest project or if you want to save it against a new test case in the same project, you must first unlink the test. To do this click on the Unlink
from Test Case button. This will tell Rapise to remove the stored SpiraTest information from the .sstest file so that it can be associated with a new project and/or test case in SpiraTest.

Warning: This operation cannot be undone so please make sure you really want to unlink the current test.
Using the Spira Dashboard

In addition to using the ribbon options described in this page, you can interact with SpiraTest using the Spira Dashboard that is available from the Start Page. This provides a convenient way of
interacting with SpiraTest, allowing you to quickly create, save and open test cases from SpiraTest.

9/16/2014 Page 56 of 105

Using RapiseLauncher

RapiseLauncher is a separate application that installs with Rapise. It allows you to remotely schedule the automated tests in SpiraTest and have RapiseLauncher automatically invoke the tests
according to the schedule. Details on using SpiraTest with RapiseLauncher to remotely schedule and execute tests is described in the separate "Using SpiraTest with Rapise” guide. This guide can be
found in the Rapise program files folder. Click on Start > Programs > Inflectra > Rapise in Windows and you will see the shortcut for the guide.

Checkpoints Top Previous Next

Purpose

A Checkpoint is defined by two things: (1) a location in the test execution path and (2) a subset of AUT state. Each time the checkpoint executes, the AUT state is compared to a predefined value.
Discrepancies are noted, and may show a regression in program behavior.

Usage
A checkpoint can be added in two ways:

(1) during recording, with the Verify Object Properties dialog, or
(2) by manually adding an Assertion to the test script.

See Also
e Recording
Tests and Sub-Tests Top Previous Next

The concept of Sub-Test is an organic way to organize the whole work with Tests in organic way. By having sub-tests one may meet one of the following goals:

1. Create multiple test scenarios working with same set of Objects and Functions.
2. Organize different test scenarios into a single workspace.
3. Use Sub-test to make cross-browser tests

We will consider each of described goals separately. The test containing the sub-test(s) we will call base or parent test.
Make Multiple Test Scenarios with the Same Set of Objects

In this case 'parent' test contains all learned objects and user-defined functions.

For example, the parent test may have objects "User Name", "Password", "Sign On". And function

function Login(username, password)

{
}

SubTest1 may be used to check login with valid Credentials, SubTest1.js looks like:
function Test ()
{
Login ("validuser", "validpassword");
// Now check that login is successfull
Tester.Assert ("Login leads to welcome message: ", Global.DoWaitFor ('Welcome User'));

)

SubTest2 may be used to check login with invalid Credentials (i.e. it is a fail-test). SubTest2.js looks like:

function Test ()
{
Login("invaliduser", "invvalidpassword");
// Now check that login is successfull
Tester.Assert ("Login leads to invalid user object: ", Global.DoWaitFor ('Invalid User'));

)

Function Login and objects welcome user and 1nvalid user are defined in Test. The subtests are just implementing various scenarios for the same set of objects.
Organize different tests into a single workspace.

Each test has its own objects, functions and scenarios.

9/16/2014 Page 57 of 105

The usage of such an approach is well demonstrated by example. We created a test called 'samp1emaster' and put all Rapise samples into it by using Add File context menu in the the Test Tree dialog.
Finally the Files tree looks like:

=} Te

5
5

5

5

All tests in this tree are independent. We use the Sample Master to manage all the tests from a single environment.

Using Sub-Tests for a Cross-browser testing

st

1 Reparts
=}) Samples

I analogRecorder.sstest

E CrossBrowser.sstest

I Dothletzi.sstest

L! RootTestsstest

I simulatedObject.sstest

U smarteaTi.sstest

I UsingCustomstrings.sstest

E UsingDLLHandlerManaged. sstest
E UsingDLLHandlerUnhanaged, s shest
E UsingImageCheckPoint,sstest
E UsingInclude,sstest

§ UsingMsaccess.sstest

E UsingMSExcel.sstest

E UsingMSwiord. s stest

W UsingOCRsstest

E UsingRegistry,sstest

I UsingReporting.sstest

I Usingspreadsheet sstest

! Using#ML.sstest

=}) Scripts

SampleMaster,js
Samplehdaster.objects.js
sampleMaster.user,js
SamplesRegressionSetjs

See 'Cross Browser".

Sub-Test Features

e Sub-test may have its own nested sub-tests. For example, in the parent test contains reference to 'CrossBrowser' subtest having 'l[E' and 'Firefox' subtests inside:

e Sub-test options are available from the 'Tag' property in the 'Properties window:

9/16/2014

Page 58 of 105

Test Files 1
=} Test -

"] Reports H

=1} Samples

+ Il mnalogRecorder.sstest

+] L! CrossBrowser.sstest

I DotMet20.sstest -
TestFiles | OhjectTree Settings

Properties 1
1 |

B Advanced -

B Tag T:"Admin\wrappershS ample
BeautifyS avedObje True
Cachelbjects False

Commandlnterval 1000
CommandLine

CustomStrings [Collection)

IterationsCount 1

fdetadata T:\admin\WrappershS ample
tdethodology B azic =

ObjectLockupdtter 500

ObjectLookupdtter 10

ObjectsPath CrossBrowser objecls.js
M MNntinns

« The following options are available in the context menu fore each of the sub-tests:

Play

Record

Save
Show Objects

Delete

e Play: Execute selected sub-test

« Record: Start recording into selected sub-test

e Save: Save options of a sub-test

* Show Objects: Show objects form a sub-test in the Object Tree
« Delete: Remove reference to a sub-test from its parent test

Dialogs, Views, and Menus Top Previous Next

This section details the Rapise GUI. Each subsection describes the function of a particular Dialog, View, or Menu. The purpose and consequences of all buttons, options, lists, and check boxes are
listed.

Accessible Events Dialog Top Previous Next

This dialog was available in an older version of Rapise and has now been depreciated.

Screenshot

Purpose
To display Microsoft Active Accessibility event notifications.

How to Open
Press the Monitor Events button in the SeS Spy Dialog.

Widgets
« Skip: While the Skip option is selected, the Accessible Events Dialog stops printing event notifications. The number of notifications skipped is printed to the right of the word Skip:
Skip (195)

* Ignore Mouse Move: Do not print notifications of mouse movement.
e Clear: Clear the Accessible Events dialog.

See Also

9/16/2014 Page 59 of 105

* Microsoft Active Accessibility is described here http://msdn.microsoft.com/en-us/magazine/cc301312.aspx
Add New Web Service Dialog

Top Previous Next

Screenshot

Purpose
Adds a new REST web service to your Rapise test. It adds the web service as a .rest file that is added to the "Services" folder of the "Test Files" section:

How to Open
Click on the "Web Services" icon in the Rapise Test ribbon tab.

Create New Test Dialog

Top Previous Next

Screenshot

Purpose
Create a new test.

How to Open
Menu Button > New Test.
Top Previous Next

Create Sub-Test Dialog

Screenshot

You are about to create another Test inside the folder of current Test. Please, provide Test folder name:

ChlUsers\Public\Documents\Rapise\SamplesiSampleATM

Use Methodology:

Basic: Manual Scripting Mode
Rapise supports multiple testing methodologies. Select one to be used for newly created Test.

V| Mew Test should have own set of Objects.
If unchecked the test will re-use objects from containing Test. Le. it will not have own file
"<testname=.objects,js” and will refer one from its parent.

| Mew test should have own User-defined functions

Ifunchecked the test will re-use functions from containing Test. Le. it will not have own file
"<testname=.user,js” and will refer one from its parent.

reate | Cancel | |

Purpose
Create a sub-test.

« New test should have own set of Objects: Uncheck it if you want to create a scenario re-using objects from parent test.
* New test should have own User-defined functions: Uncheck it if you want to create a scenario re-using utility functions from its parent test.

9/16/2014 Page 60 of 105

The Sub-Test is always created inside the folder of its parent test. If parent test is saved to a new location then sub-test is also saved as a sub-folder of a new location.

Choose Create Sub-Test... in the context menu of a folder in Test Files dialog.

To view and edit files. This includes javascript (js), report (trp), and excel (xls) files.

Open a file using the Test Files Dialog. The file will open inside of the Content View.

Allow more than one filter criteria for the same column.

In the Report Viewer, open the drop-down menu for one of the filter cells; select the Custom option (see below):

Fail

Pass

9/16/2014 Page 61 of 105

All + of the following conditions

Status E] {(DENul)
= Equals -
Does not equal
< Less than

= Less than or equal to

> Greater than

— = Greater than or equal to T
* Like

= Matches Regular Expression -

You may specify as many conditions as you like. Each condition has two properties, a Matching Criteria on the left and a filter value on the right. The filter value is a string, and the matching criteria

specifies what constitutes a match. For more details, look HERE.

Filter Aggregation
There are two ways you can aggregate / combine filter conditions:

Al ~ of the following conditions:
A
Any | -

o All: All conditions must be true to constitute a match.
« Any: At least one condition must be true to constitute a match.

Buttons

B Delete

* Add: Add a extra condition row.
* Delete: Delete the selected condition.

You can select a condition by clicking on the field name to the left of the matching criteria:

Status - | ((DENull))

| Status ~| ({DBNull})

e OK: Close the dialog and apply the filter.
o Cancel: Close the dialog. Do not apply the filter.

Errors View

Screenshot

Purpose

The Errors View displays execution error details. Execution errors are those that cause Recording or Playback to stop.

How to Open
The Errors View is part of the Default Layout.

Error Message

T:\adminWwrappershE ngineyFlaver.js(407, 4] Microsoft JScript runtime emror: Exception thrown and not caught

Double click on an error message to go to the corresponding source line.

Widgets

L]

* The text box is a search box.

. = -
o The icons from left to right are Find Next Entry 'U, Copy Selected J , Clear All Text ", and Select All Text 2 i

Find and Replace Dialog

Screenshot

9/16/2014

Top Previous Next

Top Previous Next

Page 62 of 105

Purpose
To find and replace text in files displayed in the Rapise Content View.

How to Open
Select the Find in Files button on the Ribbon (Test tab > Tools menu).

Find in Files Tab

Find what: Place the string you would like to search for in the Find what text box.

.

Look In: this option specifies where the search will take place. You can limit the search to: current document, current selection, current test, the entire test and subtests, or a specific folder.

Directory path: Use the Directory Path text-box to specify the directory in which to search. The Directory path text-box cannot be accessed (and is ignored) if the Test files checkbox is checked.

Check the Include sub-folders option to search recursively from the directory specified in the Directory Path text-box. The Include sub-folders option cannot be accessed if the Test files checkbox is
checked.

.

Match case option: If unselected, case is ignored in the search.

Match whole word option: If set to true, parts of words will not count as matches.

Look at these file types: Search only files with the specified file type(s).

Find and Replace Tab
There is only one significant difference between the Find in Files Tab and Find and Replace Tab: the Replace with text-box.

* Replace with text-box: All occurrences of the string in the Find what text-box will be replaced with the string in the Replace with text-box when you press the Replace button.

Find Results View Top Previous Next
Screenshot
Find Results

| - <
C:\Users'\Public’Documents'\Rapise'\Samples'Adocbe Flex'AdobeFlex js(87,1): Tester Assert Equal{"Verfy that: Text=Moved to New Fol
CUsersPublictDocuments'\Rapise Samples Adobe Flex AdobeFlex js(31.1): Tester Assert Equal("Verfy that: Label=FPaste”. Se5(pb2
C:\Users'\Public'Documents'\Rapise\Samples‘Adobe Alex\AdobeFlex js(35,1): Tester Assert Equal{"Verfy that: Visible=true", SeS{OK)
C:\Users'Public Documents' Rapise Samples* Adobe Flex AdobeFlex js(101,1): - Tester.Assert Equal"Verfy that: Visible=true", SeS{OK)
C:\UsersPublichDocuments\Rapise SamplesAdobe Flex\ Adobe Flex user js(38, 1): Tester Assert("Problems v
‘1 18 entries found

Purpose
Displays results for the Find and Replace Dialog.

How to Open
The Find Results view is part of the Default Layout.

Messages
C\Users'Public’\Documents\Rapise'\Samples' AdobeFlex'AdobeFlexjs(101,1): Tester.AssertEqual("Verfy that: Visible=true
Double click on a message to go to the corresponding source line.

Widgets

L]

* The text box is a search box.

. a .
e The icons from left to right are Find Next Entry +J , Copy Selected J , Clear All Text <, and Select All Text —J R
Find Text dialog Top Previous Next

Screenshot

9/16/2014 Page 63 of 105

Find and Replace

@ Find ﬁﬁ Replace
Find what:
Search]

Look in: | Current Document

Find options
Match case Incl

Match whole word Incl

Use: | Standard Search

Find All

Purpose

Find occurrences of the Search Term text in the currently visible Source Editor.

How to Open

Ribbon > Edit Tab > Search menu > Find button 4
Or type CTRL+F on the keyboard when the source editor is option.

Find Tab

o Find what: Place the string you would like to search for in the Find what text box.

* Look In: this option specifies where the search will take place. You can limit the search to: current document, current selection, current test, the entire test and subtests, or a specific folder.

* Match case option: If unselected, case is ignored in the search.

* Match whole word option: If set to true, parts of words will not count as matches.

TestParam Collection Editor Dialog

Screenshot

Purpose

To specify Custom Strings and their values.

How to Open

Open from the Settings Dialog, TestParams option:

Settings 1
51|
4 Advanced

CommandLi
EntryPoint Test

Serverf 1

Server 1

Server” 2
Execution
Methodology
Recording
Screen Capture
Settings

TestParams
Test Parameters
May be used for integration with oth...

+ [IEELEE 3 items L

9/16/2014

Top Previous Next

Page 64 of 105

Widgets

o Add a custom string. If you press Add, you'll see this:

« Remove: removes selected custom string.
* OK: Save changes and close dialog.
* Cancel: Close dialog without saving changes.

Object Tree Dialog Top Previous Next
Screenshot
Object Tree [}

5 id n lidH

i..__j Object Tree C:\ProgramData\Documents'\Rapize\Sa
4 D Inflectra | Library Information System - Windows |
3

I uthor_ [Author:]

A Book_M nt [Book M nt]
ctl00EMainContentSbtnSubmit [ctl00EMainCo
enre_ [Genre:]

A Log_In[Log In]

[ame_ [Name]

Library Information System | Log In - Windows Int
Library Information System | Book Management -
Global

3
3
b
3
3
» O
» O
» O
fly User Functions

5
Yoar User Varizbles

Test Files Settings | Object Tree

Purpose
Display learned objects.

How to Open
The Object Tree dialog is part of the Default Layout.

Context Menu (root node)
Right click the Object Tree node to see:

Refresh
Collapse all
Expand all
Filter...

« Refresh checks for new objects to display.
e Collapse all collapses the entire object tree.
« Expand all expands the entire object tree.

o Filter... filters the object tree.

Context Menu (object)
Right click on an object in the Object Tree dialog to see:

Flash
Re-Learn
Remove
Clone

Add Parameter

« Flash opens the application/url where the object is located. A frame will blink around the object to show you where it is on the page.

o Re-Learn will open up the Recorder, allowing you to re-learn the object. This is useful if the AUT has changed and the object definition will no longer correctly locate the object.
* Remove simply removes the selected object from the tree.

« Clone makes a copy of the object definition and adds the cloned version into the tree. You can then make changes to the cloned copy.

o Add Parameter opens up a dialog box that lets you add a custom parameter to the learned object definition (stored in the Test.objects.js file).

Top Previous Next

9/16/2014 Page 65 of 105

Options Dialog

Screenshot

Purpose
Use the Options dialog to change Rapise settings. Your changes will apply to all tests.

How to Open
Press the Options button on the Ribbon (Test tab > Tools menu).

Misc

« SplashScreen: A splash screen is the image that appears while a program initializes. The Rapise splash screen looks like this:

1.1.24
Set SplashScreen to False to prevent the splash screen from appearing.

Settings

.

AutoReloadModifiedFiles: If set to True, any files you modify outside of Rapise are automatically reloaded in Rapise.

DefaultFolder specifies where new tests are kept before you explicitly save them. The location is relative to the Rapise executable.

Enable Execution Monitor - specifies whether the execution monitor dialog box will be displayed during playback.

.

FrameStyle: Specifies which frame to draw around objects when you Record, Learn, and Spy.
The Basic frame is on the left and the Modern frame is on the right:

LoadLastTestOnStartup: If set to True, Rapise will open the last test you worked on and saved. If set to False, Rapise will create a new test named MyTest<#> where <#> is an integer. A folder for
MyTest<#> is created in the folder specified by the DefaultFolder option.

NormalizeFileName: If set to True, files are referred to (in the *.sstest file) using a a path relative to the *.sstest file. Otherwise, their absolute path is used.

RecentTests: The maximum number of recent files displayed in the Recent Tests list. To see the Recent Tests list, open the Application Menu:

9/16/2014 Page 66 of 105

« Remember Debugger Layout: If True, Rapise will remember the window layout for debug mode separately. For example, this may be useful if you want to work full screen while authoring the Test
and half-screen to debug. This way the AUT and the Rapise debugger fit on the screen.

o ShowDashboardOnStartUp: If True, the Spira Dashboard will open automatically when Rapise is opened.
« ShowsStartPageOnStartUp: If True, the Start Page will open automatically when Rapise is opened.

« StyleLibrary: determines the color scheme of the Rapise window. If you click on StyleLibrary, you'll notice that a drop down arrow appears to the right. Press the arrow to see all of the Style options:
RecentTestz 10

ShowStartPage0nStartup Tewun ,
: |l Office2007B1ue F =

StyleLibrary

Office2007Black
Path to a file having style library configuration. i}

a e
Office2007Siver

ok] [Cancel

Tools Tab

.

Build OCR Font Database: Pressing the Build OCR Font Database button updates the list of screen fonts that Rapise recognizes when using an OCR object. Whenever you install new Fonts onto the
computer you should click this button to have then added to the Rapise font database.

Reset Layout: Pressing the Reset Layout button restores the default layout. Rapise will restart.

Java Settings: Pressing the Java Settings button displays the Install Java Access Bridge dialog box. Installing the Java Access Bridge lets Rapise connect to Java AWT/Swing applications so that
they can be tested.

Spira Connection Settings: Pressing the Spira Connection Settings button takes you to a dialog box that lets you change how Rapise is integrated with the SpiraTest test management system. It will
let you change the URL, username and password used to connect.

.

Output View Top Previous Next
Screenshot
Purpose

The Output View displays Rapise output. The amount of output depends on the Verbosity Level.

How to Open

9/16/2014 Page 67 of 105

The Output view is part of the Default Layout.

Writing to the Output View
Use the global Log() function to write to the Output View.

Widgets

L]

* The text box is a search box.

- "
o The icons from left to right are Find Next Entry L , Copy Selected J , Clear All Text | and Select All Text i R

Properties Dialog Top Previous Next
Screenshot
Properties o

Locatars
WEIEION 1]

Locators

Obiject locators that can be used to
identify the object within AT

Purpose
To display the properties of the object, file, or folder you last clicked on. Objects are in the Object Tree Dialog and files/folders are in the Test Files Dialog.

How to Open

The Properties Dialog is part of the Default Layout.

Recording Activity Dialog Top Previous Next
Screenshot

Purpose

The Recording Activity (RA) Dialog is used for Recording, Analog recording (absolute and relative), Object Learning, and creating Simulated Objects.

How to Open

1. Open the SAR Dialog. Instructions are HERE.
2. You must select two things: (1) which recording library to use during the recording session and (2) which process/program to record. Look HERE for more information on using the SAR Dialog.
3. Press either Select or Run on the SAR dialog to open the RA Dialog.

The Grid

As you interact with the AUT (Application Under Test), your actions are recorded in the grid of the RA dialog. The following screenshot shows the RA dialog after two interactions with www.google.com:
(1) first, Inflectra was entered into the query text box and (2) the Google Search button was then pressed.

Object Action Data Comment
P q SetTest Inflectra Set Text Inflectra ing
W2 btnG Click Click an btnG

Context Menu
If you right click in the grid, you'll see a context menu with three options:

9/16/2014 Page 68 of 105

* Delete Action removes the selected row.
* Edit Action opens the Action Editor Dialog. This is also opened by double-clicking a grid entry.

e Press Try Action and Rapise will execute the action.

Widgets

Learn (Ctrl+2) ||Q) Spy(Ctrl+5) | | ‘ | Pause |
| Analog (Ctri+d) | | _Simulated 1= | Cancel || Finishjctri+3) |
|Last captured: HTMLObject (http://www.google.com/search?hl=ens.., I:‘ Tiansparent |

Verify: Press to open the Verify Object Properties dialog.

The Learn Shortcut: Use to learn an object.
Place the mouse cursor over the object you wish to learn. It should become highlighted with a purple box. Press Ctrl+2 while the object is highlighted. You will see a line added to the RA dialog,
signifying that the object was learned.

The Spy Button: The Spy Button opens the SeS Spy dialog. The SeS Spy dialog allows you to view the state of the objects in your program. Viewing object state is called Object Spying. The SeS
Spy dialog is described here.

.

Pick Object: Use If the object you wish to learn is invisible (covered by another object). Pick Object is disabled for Internet Explorer and Firefox recording.
1. The Pick Object button will open the SeS Spy Dialog.

2. Spy on the obstructing object. (Press Start Tracking, mouse over the object, press CTRL+G)

3. Select the item you wish to learn from the Tree section.

4. Press the Learn Selected button.

The Pause Button: The Pause Button on the RA dialog temporarily stops Recording. Any interacting you do with the AUT is ignored. When you press the Pause Button, the title of the button
changes to R« Press the R button to continue recording.

The Analog Button: The Analog button begins Analog Recording. Analog Recording tracks mouse movements, keyboard inputs, and clicks. To end Analog Recording, press CTRL+Break.

.

The _Simulated Drop-down Menu:

An object can be learned if it matches a rule specified in the Recording/Learning libraries available. The drop-down menu lists the possible rules for learning objects in the current application. If you
cannot learn an object with one rule, try another in the list. Create a Simulated Object only if the other, more flexible alternatives have been exhausted.

Learning using a specific rule:

1. Double click on a rule in the drop down list. The button text should change to the text that you selected
2. Press the button

2. Select an object on the screen and make sure it is highlighted with a rectangle

3. Press Ctrl+2 to learn the object

The Cancel Button: The Cancel button stops Recording, closes the RA dialog, and discards any actions recorded or objects learned during the Recording session.

The Finish Button: The Finish button ends the Recording session. The RA dialog is closed, and the information collected during Recording is used to create a script. The script is displayed.

.

Transparent Option: While the RA dialog is open, it is always on top. The Transparent checkbox makes the RA Dialog transparent so that you can interact with objects behind it. The image below
illustrates the difference:

9/16/2014 Page 69 of 105

Replace Text Dialog

Screenshot

Find and Replace @
@ Find ﬁﬁ Replace
Find what: | EEe=g -

Replace with: | Spira_RestService_40_Project | -

Look in: | Current Document -

Find options
Match case
Match whole word

Use: | Standard Search -

Next Replace Replace All

Purpose

Replace occurrences of the Search Term text with the Replacement Text in the currently visible Source Editor.

How to Open

Ribbon > Edit Tab > Search menu > Replace button.

Replace Tab

« Find what: Place the string you would like to search for in the Find what text box.

Top Previous Next

« Look In: this option specifies where the search will take place. You can limit the search to: current document, current selection, current test, the entire test and subtests, or a specific folder.

« Match case option: If unselected, case is ignored in the search.
* Match whole word option: If set to true, parts of words will not count as matches.

« Replace with text-box: All occurrences of the string in the Find what text-box will be replaced with the string in the Replace with text-box when you press the Replace button.

Report Viewer

Screenshot

9/16/2014

Top Previous Next

Page 70 of 105

Purpose
The Report Viewer displays test result (trp) files.

How to Open
Use the Test Files Dialog to open a report (trp) file. The report file will be opened in a Report Viewer in the Content View. The Report Tab of the Ribbon will also open.

Or, you can Playback the test script. The report file will display in a Report Viewer after the test completes.

See Also

* For more info on Reports, see Automated Reporting.
« For information on manipulating reports, see Ribbon: Report.

REST Definition Editor

Top Previous Next

Screenshot

Purpose
The REST Definition Editor allows you to edit REST web service definition files (.rest).

How to Open
Use the Add Web Service Dialog to create a new REST definition (.rest) file. The definition file will be opened in a REST Editor in the Content View. The REST Tab of the Ribbon will also open.

9/16/2014 Page 71 of 105

Or, you can double-click on an existing .rest file in the Test Files View explorer window. The definition file will be opened in a REST Editor in the Content View. The REST Tab of the Ribbon will also
open.

Request

The request form has several sections that you need to populate:

Method - the type of HTTP request being made (GET, POST, PUT, DELETE, etc.)

URL - the URL of the web service request with any parameter tokens included (e.g. {session_id} in our example above)
Credentials - Any HTTP Basic Authentication Headers

Headers - Any other HTTP headers (both standard and custom)

Parameters - Any parameters that have been defined in the URL that will be called from the Rapise test script.

Body - The body of the request (for POST and PUT requests). This can be in any text-serialized format such as XML or JSON.

Response

Response Header | Response Body | Formatted XML |

MName Value
Status Code 200 OK
Content-Length 113
Cache-Control private
Content-Type application/xml; charset=ut-8
Date Thu, 20 Jun 2013 18:00:27 GMT
Set-Cookie ASP NET_Sessionld=3ggghumifkgbdndxb02ht
Server Microsoft- 0
¥-AspMet-Version 4030319
¥-Powered-By ASP.NET

Response Header I Response Body | Formatted XML
<string xminz="htip://schemas microsoft com/2003/10/Senzlization™ >6cBa3ee-ede0-42d0-bead-7375604b9175</string =

Response Header I Response Body | Formatted JSON

"82439boc-37e4-4064-820e-22d738cd 1e34”

This displays the output from the last web service request. It has several tabs:

e Response Header - Displays a list of the HTTP response headers (name and value). If the request received a 200 OK code back, it's displayed in green, if it receives an error code back, it's
displayed in red.

e Response Body - Displays the raw text of the HTTP response body received from the server.

o Formatted XML - If the received body content is identified as XML, this tab displays nicely formatted XML that is easier to read than the raw response body.

e Formatted JSON - If the received body content is identified as JSON, this tab displays nicely formatted, indented JSON that is easier to read than the raw response body.

Operation Explorer

This section lets you add, open, delete and clone REST requests in the definition file.

e Add request - Adds a new REST operation to the current .REST definition file

e Open request - Opens the currently selected REST operation in the current .REST definition file. This is the same as double-clicking on the item name.
e Clone request - Makes a copy of the currently selected REST operation and allows you to give the copy a new name.

e Delete request - Deletes the currently selected REST operation from the current REST definition file.

9/16/2014 Page 72 of 105

See Also

e For more info on REST Web Services, see REST Web Services.
« For a tutorial on creating a REST web service test, see the Web Services REST Tutorial.

Ribbon: Test Top Previous Next
Screenshot
Purpose

The Test tab provides tools to help with creating and executing tests.

How to Open

The Test tab is always available.

File

* Save the test.

e Open a test.

« Save As allows you to create a new, differently named copy of the test you are editing.

« Save to Spira allows you to save a Rapise test so that it is stored in a SpiraTest test management repository.

« Spira Properties allows you to see the name of the SpiraTest project and test case that the current Rapise test is linked to.

« Open from Spira allows you to open a Rapise test that is stored in a SpiraTest test management repository.

* Web Services allows you to add a new web service definition to your Rapise test. Clicking on this displays the Add Web Service dialog box.

Recording and Learning

o Press the Record/Learn button to open the Recording Activity Dialog.

Debugging
Ne Debugging -
Level 1 (Minimal) -
Debugging

« The top drop-down list specifies if you would like to use an External Debugger. If so, you can either connect on execution (the Run with External Debugger option) or only connect if an error occurs (the 1
External Debugger on Error option).
o The lower drop-down list controls the Verbosity Level.

Executing

« Press Play to execute the test script (*.js) file associated with the open test. You can change which test script to open in the Settings Dialog. The test script is specified by Settings > ScriptPath.

Tools

* The Spy button opens the Spy Dialog.

e Press the Options button to open the Options Dialog.

e The Find in Files button opens the Find and Replace Dialog.
* The Object Mgr button opens the Object Manager add-in.

Help

* The Help button opens the Rapise user's manual and makes the Contents tab visible.
* The Search Help button opens the Rapise user's manual and makes the Search tab visible.

9/16/2014 Page 73 of 105

* The Help Index button opens the Rapise user's manual and makes the Index tab visible.
« The Start Page button opens the Rapise Start Page.
e The Spira Dashboard button opens the Rapise Spira Dashboard.

« The Activation button opens the Rapise license activation screen. This can be used to deactivate the current license so that it can be used on a different machine.

Ribbon: Report

Screenshot

Purpose
The Report tab is for use with report (trp) files.

How to Open
The Report tab is available anytime you have a report (trp) file visible in the Content View.

File

o The drop-down menu contains a history of previously opened reports.
* Press Plain to view test steps, assertions, and messages aligned in a table.

« Press Hierarchical to more clearly see what assertions, messages, and data are associated with which test steps.

Export

* Press Export to Excel to save the report as an excel file.
* Press Export to PDF to save the report as an Acrobat PDF file.

Layout

e The drop-down menu lets you choose between previously saved layouts.
* You must press Save Layout to keep your layout changes after closing Rapise.
* Press Reset Layout to undo any changes you've made.

Data

e Press Choose Columns to hide or reveal report columns.
* Merge Cells: Merge identical consecutive cells.

Display

* Images: Toggle between hiding and revealing images.
« Collapse: Collapse the report to show only the top level. What is visible will depend on how the report is sorted.
« Expand: Expand all report rows.

See Also
e Automated Reporting

Ribbon: Spreadsheet

Screenshot

9/16/2014

Top Previous Next

Top Previous Next

Page 74 of 105

Purpose
The Spreadsheet tab is for use with excel (xIs) files.

How to Open
The Spreadsheet tab is available anytime you have an excel (xls) file visible in the Content View.

File

« The Reload button reloads the excel file from disk. Use it if the excel spreadsheet was modified by an external application after you opened it in Rapise.

Ribbon: Edit

Screenshot

Purpose
The Edit tab of the Ribbon provides tools for editing script files.

How to Open
The Edit tab is available anytime you have a javascript file visible in the Content View.

File

* The Save button (Shortcut: CTRL+S) saves the script file you are editing.
« The Save As button allows you to create a new, differently named copy of the script file you are editing.

Clipboard

e The Paste button (Shortcut: CTRL+V) pastes from the clipboard.

e The Cut button (Shortcut: CTRL+X) erases whatever text you have highlighted, and copies it to the clipboard.

« The Copy button (Shortcut: CTRL+C) copies whatever text you have highlighted to the clipboard.

History

* The Undo button (CTRL+Z) reverses the last deletion or insertion made in the Source Editor.
o The Redo button (CTRL+Y) reverses the last undo action.

Search

¢ The above text box is a search box.

* Pressing the find button L] opens the Find Text dialog.
* The Replace button opens the Replace Text Dialog.

9/16/2014

Top Previous Next

Page 75 of 105

Font

« Use the above font and size drop-down menus to change the text appearance. The entire file will be affected.

Debug

« Press the Toggle Breakpoint button (Shortcut: F9) to insert or remove a breakpoint at the current cursor position.

Ribbon: Debugger

Screenshot

b Aun L= Step Over

%= Stepln @ Stop Debugger

eg Step Out e Break
Debugger

Test Edit Debug

Purpose

The Debugger Tab provides tools for use with the Internal Debugger.

Top Previous Next

The Debugger Tab is available while the Internal Debugger is being used. To use the Internal Debugger, first enable it, then Playback your script. Instructions for enabling the Internal Debugger are

How to Open

HERE.

Debugger

* Run (F5): Continue executing the script.

e Step In (F11): Step into a function/procedure.

o Step Out (Shift+F11): Continue until the current procedure is exited.
o Step Over (F10): Go to the next line in the current procedure/function.
.

.

Ribbon: REST

Screenshot

Stop Debugger (Shift+F5): Stop executing the script and exit the debugger.
Break (F9): Create a breakpoint in the script at the cursor.

Purpose

The REST tab is for use with editing REST web service definition files.

How to Open

The REST tab is available anytime you have a REST definition file (.rest) file visible in the Content View.

File

e Save Requests - Saves the current request request definitions to the .rest file.

Top Previous Next

e Update Object Tree - Updates the main Rapise Object Tree with the current REST definitions. This turns each of your REST requests into Rapise learned objects that can be scripted against.

Edit

e Add Header - Allows you to add a standard or custom HTTP header to the current REST request:

9/16/2014

Page 76 of 105

e Add Parameter - Allows you to add a parameter name/value to the current REST request. This is useful when you want your test script to be able to pass through different values (e.g. get
book #1 vs. book #2):

e Add Credentials - Allows you to add an HTTP basic authentication credential (username and password) to the request. Saves you having to add the header manually (which would require
base64 encoding the username and password):

Select an Application to Record... Dialog

Top Previous Next
Screenshot

Purpose
The Select an Application to Record... (SAR) Dialog appears before Recording takes place. It queries the user for which program to record, as well as what Recording Library to use.
If you are recording the same application for the second time then SAR is not shown. The recording proceeds to last used application if it is still available on the screen.

How To Open

To open the SAR Dialog, press the Record/Learn button on the Ribbon (Test tab > Recording & Learning menu):

Libraries

9/16/2014 Page 77 of 105

Library

[Firefox HTML
Q Generic

Internet Explorer HTML

Description

Detect library automatically

MNET 1.1, 20, 3.0, 3.5 with Accessility

HTHL DOM-bazed recorder far Internet Explarer

HTML DOM-bazed recorder for Mozilla Firefox

Generic library contains basic definitions for most commo...

The Library table lists the available Recording Libraries. Select the one appropriate to the process/program you will record. If you select Auto, Rapise will attempt to choose the correct recording library
for you. See the Recording Library section for more information.

Available Applications

Available Applications

]

@ Help & tManual
1 Program Manager

B C:\windowshsystem32omd. exe

FID

7032
744
4736
024
703z

@Sample ATM Login - Windows Internet Ex.. 7000

Path

C:Awindowshexplarer. exe

C:AProgram FileshGoogleYGaogleT oolbarl
CAwindowshsystem32homd. exe
C:\Program FileshEC Software\Helpandtd
C:windowshexplorer. exe

C:\Program Fileshntermet E xplareriexplon

The Available Applications table lists all of the processes running at the time you open the SAR dialog. If the process you would like to record is already open, you can select if from the table. Pick the

appropriate recording library (above) first before you pick an application to record; your application choice will become unselected if you do not do it last.

Widgets

[Showall |@ Refiesh

|

e The Cancel button closes the dialog.
« Show All: While unchecked only top level application windows reflected in the Windows Task Bar are shown in the 'Available Applications' list. Check this and press Refresh to see all top level
windows available on the screen.

« Refresh List: Press to refresh the Available Applications table. After refreshing, you will see processes that began after the SAR dialog was opened.
« Select button: To record a process from the Available Applications table, select the process and then press the Select button.

Run Application Tab

o Path drop down list: If the program you would like to record is not already open, you can specify its path here. If the program is already running, you can select it from the Available Applications

table.

Browse button: Browse for an application to open and record.

.
« Use working directory: To set a specific working directory when launching the application, check the box and enter in a value for the working directory.
* Run button: To record a program that is not currently open, fill in the Path text-box and press the Run button.

.

The Cancel button closes the dialog.

Settings View

Screenshot

Settings

3l |

B Advanced
CommandLine
EntryPoint

TestParams

Execution

Hacon:ing
Screen Capture
E Settings
Metadata
CbjectsPath
ReportPath
ScriptPath
TestPath
UserFunctionsPath

Recording

Purpose

9/16/2014

Test
3 items

C::\Temp“Rapise Tests"CreateMNg
CreateNewBook objects js
CreateNewBook trp
CreateNewBook js
C::\Temp“Rapise Tests"CreateMNg
CreateNewBook user js

Top Previous Next

Page 78 of 105

Use the Settings Dialog to change test specific settings.

How to Open
The Settings dialog is part of the Default Layout.

Advanced

| e

« CommandLine is a freeform text box. Use it to specify values for global variables (beginning in g_) to pass the recorder and player. You can view which global variables are available in the source files

Execution

o CacheObjects: Remember object locations and try to reuse them for speed. This is helpful with dialog based applications.
e Commandinterval: Time interval (in milliseconds) between script commands during script execution.

* IterationsCount: Your test script will be executed this many times consecutively during Playback.

* ObjectLookupAttemptinterval: This is the time Rapise will wait between attempts to locate an object.

* ObjectLookupAttempts: This is the number of times Rapise will attempt to locate an object.

Recording

I
« BeautifySavedObjects affects how the Script Recorder writes object information to your test script. If False, the object definition will be written as a single line:

var saved_script_objects={

Balance:{"version":0,"object_type":"SeSSimulated", "object_name":"Transaction Completed Successfully\n\nAccount 00000005 Balance:1046.00","object_class":"Static","object_role":"ROLE_
Yi

If True, the object definition will be written in @ manner that takes more space, but is easier to read and change:

var saved script_objects={

Balance: {

"version": 0,

"object_type": "SeSSimulated"

"object_name": "Transaction Completed Successfully\n\nAccount

00000005 Balance:1046.00",

"object_class": "Static",

"object_role": "ROLE_SYSTEM STATICTEXT",

"object_text": "Transaction Completed Successfully\n\nAccount
00000005 Balance:1046.00",

"locations": [

"locator_name": "Location",
"location": {
"location": "4.4.4",
"window_name": "SmarteATM",
"window_class": "#32770"

}
//section omitted for brevity

}
bi

Objects that were learned in previous recordings are affected by the value of BeautifySavedObjects.

Screen Capture

False
Capture Recording False
Include in Repart False
Widget Onfy False

Capture Execution: Set this to True if you want to save screen images for each recognized object during playback.
Capture Recording: Set this to True if you want to save screen images for each action during recording.

Include in Report: Set this to True to include the saved images in the execution report during playback.

Widget Only: Set this to True to only save the widget area in the screenshot, as opposed to the whole window.

TestParams

The TestParams section includes various custom test parameters:

Click to open the TestParams Collection Editor Dialog.

There is a build-in set of test parameters for cross-browser testing. When you open up a test that uses one of the HTML libraries it will display the following built-in test parameter that you can use to chan¢

1
CommandLine B
EntryPaint Test L

4 TestPaams 5 items b

Intemet Explorer HTML [+]
Record Title Intemet Explorer HTML

ServerProject!d Firefox HTML
ServerTestCaseFoldg Chrome HTML
ServerTestCaseld &

4 Execution
CacheObjects False
Commandinterval 1000
heration Count 1 il
limmb | mmles s bt Lk DN

9/16/2014 Page 79 of 105

Settings

E Settings _
Metadata C:\Users\PublichDocuments'Shared
ObjectsPath TwoDialogsTest objects js
ReportPath TwoDialogsTest rp =
ScriptPath TwoDialogsTest js

C:\Users'\PublictDocuments'\Shared

UserFunctionsPath TwoDialogsTest user js L4

UserFunctionsPath: Path (relative to the test directory) to the file with user-defined functions utilized in this test. Normally this file has name in form *.user.js.

ObjectsPath: Path (relative to the test directory) to file containing object tree information. This file contains saved_script_objects structure with all object locators gathered during recording and learning.
ReportPath: Path (relative to the test directory) to the test's report file. Normally this file has extension form .trp which stands for Test Report.

ScriptPath: Path (relative to the test directory) to the test script.

TestPath: Path to the test definition file (*.sstest).

e o o o o

Source Editor Top Previous Next

Screenshot

AutoComp\ete.js“‘ - X
//U=se 'Becord/Learn' button to begin test recording

| »

function Test ()

{
var startlndex = 35;
war endIndex = sl

m

4| i r

Purpose
To display and edit javascript files. The editor supports Syntax Highlighting, Syntax Checking, Code Folding and Code Completion.

How to Open
Use the Test Files Dialog to open a javascript file. The javascript file will be opened in a Source Editor, in the Content View. The Edit Tab of the Ribbon will also open.

Spreadsheet Viewer Top Previous Next

Screenshot

B MsExcelxls [MSExcel$]

Drag a column header here to group by that column
Item1 Item2 sum F4

2 1 9

3 2 10 /i error
4 9 13

5 10 15
Purpose

To display excel (xIs) files.

How to Open
Use the Test Files Dialog to open an excel file. The excel file will be opened in a Spreadsheet Viewer, in the Content View. The Spreadsheet tab of the Ribbon will also open.

Top Previous Next

Rapise Spy Dialog

Screenshot

9/16/2014 Page 80 of 105

Purpose
The Spy dialog is used to Object Spy.

How to Open
There are three ways to open the Spy dialog:
1. Press the Spy Button on the Ribbon (Test tab > Tools menu)

2. Press the Spy Button on the Recording Activity Dialog
3. Press the Pick Object button on the Recording Activity Dialog. Note: If you use this method, the dialog has an extra Learn Selected button.

Choosing the type of Spy
You can change the type of Spy that will be launched by clicking on the down arrow to the right of the Spy icon in the main application Ribbon:

There are four types of Spy available:

1. Accessible - This is used to inspect applications that expose their properties using the Microsoft Active Accessibility (MSAA) technology. This is typically used by applications written in MFC, ATL,
Qt, C++ and Visual Basic.

2. Java Object - This is used to inspect applications written using the Java AWT and Swing Ul frameworks.
3. Managed Object - This is used to inspect applications written in .NET 1.1, .NET 2.0, .NET 4.0 using Microsoft Windows Forms.
4. UlAutomation Object - This is used to inspect applications that expose their properties using the Microsoft's newer UlAutomation technology. This is typically used by applications written in WPF,
Silverlight and Java SWT.
Start Tracking

The Start Tracking button (or CTRL+G) causes Rapise to enter Tracking Mode. In Tracking Mode, Rapise investigates the object under your mouse. It identifies the object's type and learns the object's
properties. As you move your mouse, the objects you point to are highlighted (a box is drawn around them).

Stop Tracking
The Stop Tracking button is only visible in Tracking Mode. Press Stop Tracking (or CTRL+G) to exit Tracking Mode. The Spy dialog will display information for the last object highlighted.

Maximize/Minimize buttons

The maximize |l| and minimize ;I buttons control the appearance of the dialog. They either hide or make visible the sections to their right or below. See the example below. The button highlighted in
yellow in the left image is pressed to show/hide the appropriate pane.

9/16/2014 Page 81 of 105

Accessible Object

The Accessible Object section of the Spy dialog shows properties of the object that are visible through the Microsoft Active Accessibility interface.

Tree
The spied upon object and its children are displayed here.

Properties
Object fields and field values are displayed here.

Tools

« Mouse Button Click: Emulate Left mouse click for the item selected in Spy tree.

« Default Action: Execute DoDefaultAction for given accessible object.

« Set Selection: Perform accSelect using the option flags set in the corresponding checklist (above).

Java Object

The Java Object section of the Spy dialog shows properties of the object that are visible through the Java Access Bridge interface.

Tree
The spied upon object and its children are displayed here.

Properties
Object fields and field values are displayed here.

Managed Object

9/16/2014 Page 82 of 105

The Managed Object section of the Spy dialog shows properties of the object that are visible through .NET Framework reflection interface.

Tree
The spied upon object and its children are displayed here.

Properties
Object fields and field values are displayed here.

UlAutomation Object

The UlAutomation Object section of the Spy dialog shows properties of the object that are visible through the UlAutomation interface.

Tree
The spied upon object and its children are displayed here.

Properties
Object fields and field values are displayed here.

HWND Object

The HWND Object section of the Spy dialog shows properties of the object that are visible with its HWND handle.

Tree
The spied upon object and its children are displayed here.

Properties
Object fields and field values are displayed here.

Tools
* Mouse Button Click: Emulate Left mouse click for the item selected in Spy tree.
« Highlight: Draw rectangle surrounding selected object (HWND or Accessible).

These tools can be accessed from the right-click Spy context menu:

9/16/2014 Page 83 of 105

Parent
Highlight
Refresh
Default Action
Mouse Click

Save to File..,

See Also

o Microsoft Active Accessibility is described here http://msdn.microsoft.com/en-us/magazine/cc301312.aspx
* HWND is described HERE.
e Microsoft UIAutomation is described here http://support.microsoft.com/kb/971513/

start Page Top Previous Next
Screenshot
Purpose

To display the latest news and information regarding Rapise and the currently open test.
The Start Page is intended to be a convenient entry point for most common tasks related to test design and execution. The Start Page provides:

e 1. Alink to the Spira Dashboard: This will open the Spira Dashboard that provides a convenient way to interact with Inflectra's SpiraTest test management system or Inflectra's SpiraTeam
application lifecycle management system.
e 2. Current Test information block, including:
o 3. Test Name and available scenarios
o 4. Test Parameters including the Spira Properties for the test. These include the IDs of the project and test case in SpiraTest. In addition, for web-based tests there will be the special
Browser selection property. All tests will include any custom properties set by user.
o 5. Test Description. This information is taken from a Readme.htm file (if it exists in the test folder of the current test). If this file does not exist then the first /** ... */ comment inside the
Test function is displayed instead.
6. Quick Start Guide This is an interactive tutorial for beginners who are using the system for the first time. It may be hidden by unchecking the Show checkbox.
7. Recent Tests. This displays a clickable list of recently used tests
8. Browser Samples. This displays a list of available Rapise samples. Some samples are shipped with Rapise while others are provided from the online public repository.
9. The Fetch Samples button is used to download/update additional samples from online public repository.

How to Open

The Start Page opens automatically with Rapise. This behavior can be modified in the Options dialog using the ShowStartPageOnStartup setting.

Start Page Top Previous Next
Purpose

This page displays information from the SpiraTest or SpiraTeam server that this instance of Rapise is connected to. More details on using Rapise with either SpiraTest or SpiraTeam can be found in the
separate Using Rapise with SpiraTest Guide. A copy of this guide should be in the Start > Programs menu created by the Rapise installer.

The dashboard displays information about the current Spira project, including the associated test cases, test sets and automation hosts:

Screenshot
A typical Spira dashboard will look like the following:

9/16/2014 Page 84 of 105

Each of the sections is explained separately below:

Spira Login/Sign-Up

This section will display the name of the currently configured Spira user (if there is one) together with the option to either login to an existing Spira instance or to sign-up for a new one:

Spira Login/Sign Up
Sign Up

Auto Login: [

e Login: this will log you into the instance of Spira listed in the Connection Info section
e Sign Up: this link will take you to the Inflectra website where you can sign up for a Spira account.
e Auto Login: if you select this option, Rapise will automatically login to Spira when it first starts up.

Once you login to the instance of Spira, the widget will change to the following:

Spira Login/Sign Up
Welcome, administrator!

Auto Login: [

e Logout: this will log you out of the instance of Spira listed in the Connection Info section

Connection Info

This section will display the URL, login and corresponding local repository folder for the current Spira instance (if one has been set).

Connection Info

Spira URL: hitp:/localhostispira
User Name: administrator

Spira Folder:

Local Folder: C\Temp\RapiseTests

[Edit Connection Seftings |

To change the current connection (or to set one up if this is a new installation of Rapise), click on the [Edit Connection Settings] button. That will display the Connection Settings dialog box:

9/16/2014

Page 85 of 105

You can then change the current Spira connection using this dialog box. See the topic on Spira Integration for more details.

Automation Hosts
This section will display a list of the automation hosts available in the currently selected Spira project:

Automation Hosts

Select host... o

[create Host for this Maching |

An automation host is a notional computer that Spira uses to assign specific test sets to specific computers running Rapise. This allows you to schedule tests to run on different computers remotely.
When you first connect to Spira, it will not know which automation host the current machine matches.

Using the dropdown list you can select one of the displayed automation hosts:

Automation Hosts

‘Windows Vista Host #1
Windows & Host

Windows 7 Host

That will tell Rapise that this local computer is in fact this Spira automation host. Any test sets scheduled in Spira for this automation host will now be executed on this computer running Rapise.
If you don't see the current automation host listed, you can click on the [Create Host for this Machine] button to create a new automation host entry for the current computer:

This screen lets you enter a display name (Name), system name (Token) and long description for a new automation host that Rapise will create in the current Spira project. Click [OK] to confirm the new
automation host.

Test Cases
This section displays a list of test cases that are either created by the current Spira user or are assigned to the current Spira user:

[create From Spira Manual Test |

Test Cases |MyAssigned |v

v 1 Hame Description Action

TC000001 LS Functiona! Tests

- - R Ability to edit existing book Tests that the user can login, view the details of a book, and then if
D _— J ity to edit existing boo he/she desires, make the necessary changes

[] Tcoooooz B Ability to create new book Tests that the user can create a new book in the system

[create TestSet || AddtoTestSet |

Each test cases will be displayed with the ID, name and long description of the test case together with an icon that indicates the type of test case:

1. ‘!‘J - Manual test case that has no automation script attached.
2. 3. Test case that has an existing Rapise test attached.
3. L]- Test case that has a non-Rapise automation script attached.

Clicking on the hyperlink ID will open up the test case inside Spira in your web browser. For test cases that have a linked Rapise test, there will be an [Open] button available. Clicking on this button will
open the test in Rapise.
In addition there are three other options available

e Create from Spira Manual Test: Clicking on this button will allows you to create a new Rapise test from an existing Spira manual test case. The test steps in the test case will be used to create
the shell of a test case. This is described in more detail in the SpiraTest Integration topic.

9/16/2014 Page 86 of 105

e Create Test Set: Clicking on this button will allow you to create a new test set inside Spira. It will display the following dialog box when you select at least one test case and click the button:

Enter in the name of the test set you want to create and click [OK].

o Add to Test Set: When you select at least one test case and one test set, then click this button it will add the selected test cases to a specific test set.

Test Sets
This section displays a list of test set that are either created by the current Spira user, are assigned to the current Spira user, or are assigned to the automation host that this instance of Rapise is
installed on:
Test Sets |My Assigned
v i Hame Description Action
TX000008 [55 Functiona! Test Sets
D TX000005 % Testing New Functionality This set contains allthe new features introduced in the last 3 sub-

versions

TX000008 % Exploratory Testing

Tx000008 [Regression Test Sets

[m¢oo0002 % Regression Testing for Windows &

Each test set will be displayed with the ID, name and long description of the test set.
Clicking on the hyperlink ID will open up the test set inside Spira in your web browser. For test sets that are marked as automated, there will be an [Execute] button available. Clicking on this button will
execute the test in RapiseLauncher. This is described in more detail in the SpiraTest Integration topic.

Test Files View

Screenshot

Test Files
4] Test
4] Application
2 SampleATM exe
4] Data
[} ATMDatabase mdb
] Reports
4 2] Scripts
] SarpledTiize
SampleATM cbjects js
SampleATM.user js

Test Files | Settings Object Tree

Purpose

The Test Files dialog allows you to navigate and alter the Test hierarchy, including the following:

o the script
* Report files (*.trp)

* Images captured during execution using Checkpoints

e Analog recording files (*.arf)
o data files

How to Open

The Test Files dialog is part of the Default Layout.

Context Menu (Folder)
Right click on a folder to see:

9/16/2014

Top Previous Next

Page 87 of 105

Create File..,
Add File(s)..
MNewr Group..
Reload

Create Sub-Test.,,

Rermowe from Test Del

Rermawe All from Disk

Create File: Create and add a new file to the test.

Add File: Add an existing file to the test.

New Group: Create a logical grouping of files in the test. This will not add a folder to the file system.

Reload: Refresh group contents. Use it for filter groups ('IsFilterGroup' is set to 'True' in group properties), e.g. for Report group.
Create Sub-Test...: Launch Create Sub-Test dialog.

Remove from Test: Remove the selected grouping from the test. This does not delete included files from your hard disk.
Remove All from Disk: Remove alll files included into the selected grouping from your hard disk.

Context Menu (File)
Right click on a file to see:

Open
Open Externally...
Rernowve from Test Del
Rernowve frorm Disk
« Open: Open the file in Rapise.
e Open Externally...: Open the file using associated program. E.g. if a Notepad is registered in Windows to open TXT files, then TXT file will be opened by Notepad.

* Remove from Test: Remove the file from your test. This does not delete the file from your hard disk.
* Remove from Disk: Remove the file from your test and hard drive.

Filter Groups

Filter groups read its contents from disk according to specified path and wildcard. You may setup a filter group by editing group properties:

Properties a
El Misc
FilterPath Reports

Filtetwildeard = trp

True El

Mame Reports

IsFilterGroup
true if directory should show the list of al files
matching 'Filtertwildeard' belonging to FilterPath'

FilterPath: Root path to find files via wildcard (valid only if 'IsFilterGorup' is "True').
FilterWildcard: Filter wildcard (valid only if 'IsFilterGorup' is 'True').
IsFilterGroupt: 'True' if directory should show the list of all files matching 'FilterWildcard' belonging to 'FilterPath'.

.
.
.
e Name: Group name.

Variable/Call Stack View Top Previous Next
Screenshot
Purpose

Lists the functions in the current call stack. Beneath each function, variables/objects local to that function are listed with their value and type.

How to Open
Begin debugging a script. The Variable/Call Stack View will open automatically.

Go to a function definition
Double click on a function to go to its definition.

Verify Object Properties Dialog Top Previous Next

Screenshot

9/16/2014 Page 88 0of 105

Purpose
Use the Verify Object Properties dialog during recording to add checkpoints.

How to Open

1. First, open the Recording Activity Dialog.
2. Position the mouse over an object and press Ctri+1, or
3. Press the Verify button and then click the target object with the mouse cursor.

Create a Checkpoint

Your checkpoint will be associated with a particular object. That object's properties will be listed in the Verify Object Properties dialog. Check those properties that you wish to verify during playback.
Enter expected values for the selected properties in the Value column. Note: The Bitmap and BWBitmap properties are images of the object.

Press the OK button. The Verify Object Properties dialog will close, and the Recording Activity dialog will contain a new Verify action:

Recarding activity for "Caleulator”

Object Action Data Cormment

1 Werify 29 “erify that: Height=29

| team(ctre?) |[Sx Spyictri+5) || Pick Object.. || Pause |
| Analog (ctri+g || _Simulated |- | Cancel || Finish ictr=3) |
|leammg object: [] Transparent |

The generated script will have a corresponding assert statement:

/{Werify that: Height=29
Tester. AssertEqual ("Verifvy that: Height=22", Z3el3('Chil').GetHeight(), "z327");

See Also

e Recordin
e Assert Statements
Warning View Top Previous Next

Screenshot

9/16/2014 Page 89 of 105

Purpose
To display syntax error messages as you edit javascript files.

How to Open
The Warning view is part of the Default Layout.

Error Message
Ci\Program Files\Inflectra\Rapise\UsingMSExcehUsingMSExcel js (1,1): mismatched input ') expecting RPAREM
Double click on an error message to go to the corresponding source line.

Widgets

L]

* The text box is a search box.

« =
* The icons from left to right are Find Next Entry +J , Copy Selected J , Clear All Text <, and Select All Text 2 X

See Also
e Syntax Checking

Watch View

Top Previous Next

Screenshot

Purpose
To input expressions and view their values as the script executes.

How to Open
Begin debugging a script. The Watch View will open automatically.

Inputting an Expression
1. Click the first blank line:

2. Double click on the highlighted line, under the Expression column. A text box will appear.

3. Input the expression you wish to investigate. Press Enter.

Widgets

9/16/2014 Page 90 of 105

From left to right: Copy (an entire row) J , Copy Watch Value -4, Delete Q i

HowTos Top Previous Next

This section focuses on specific tasks that a Rapise user might want to accomplish.

Open a Test Top Previous Next

You can open a test in two ways: (1) From the Ribbon, and (2) From the Application menu.

Ribbon
Select the Open option from the File menu on the Test Tab of the Ribbon:

You can also open a test that is stored in SpiraTest (our web-based test management system) instead of the local filesystem. This is done by clicking on the Open Test from Spira option instead. More
details on using Rapise with SpiraTest can be found in the SpiraTest Integration section.

Application Menu

Open the Application Menu by clicking on the Tab at the top left of the Rapise window.
The Application menu has an Open Test option, and a list of Recent Test from which you may choose:

You can also open a test that is stored in SpiraTest (our web-based test management system) instead of the local filesystem. This is done by clicking on the Open Test from Spira option instead. More
details on using Rapise with SpiraTest can be found in the SpiraTest Integration section.

Create a New Test Top Previous Next
There are two ways to Create a New Test in Rapise:

1. From the main Application menu
2. From the Start Page

From the Application Menu
Open the Application Menu by clicking on the Tab at the top left of the Rapise window.

Select the New Test option. The Create New Test dialog will appear. Follow the instructions on this dialog.

From the Start Page

9/16/2014 Page 91 of 105

Open up the Rapise Start Page:

In the Shortcuts section, click on the 'Create New Test' option:

The Create New Test dialog will appear. Follow the instructions on this dialog.
Restoring the Default Layout Top Previous Next

There are two ways to the restore the default layout: (1) On Startup, and (2) In the Options Menu.

On Startup
Press the Shift key while you open Rapise. Keep the Shift key down until Rapise is done initializing.

Options Menu

In Rapise, select the Options button. It is on the Ribbon in the Tools section:

The Options dialog will appear. Go to the Tools tab:

Select the Reset Layout button. Rapise will restart.

Change Test Entry Point Top Previous Next

Rapise assumes that the entry point of a test - Test() function is defined in a file specified in ScriptPath property of the Settings dialog. If you want to place Test() function in another file then do not forget
to update ScriptPath property of the test.

Do Absolute Analog Recording Top Previous Next

Let's once again use our trusty over-simplified TwoDialogs sample application to learn how to use absolute analog recording and use it to discover the value as well as the dangers associated with
absolute analog recording.

Steps:

(1) Run the TwoDialogs sample AUT. By default this will be located in the C:\Users\Public\Documents\Rapise\Samples\TwoDialogs\TwoDialogs.exe location
(2) Start Rapise and create a new test and call it TwoDialogsAnalogAbsolute.

(3) Press the Record/Learn button in the toolbar of Rapise.

(4) When the "Select an Application to Record" dialog is displayed, choose the TwoDialogs.exe application and ignore the library list - we will not be using any library for analog recording. Press the
Select button.

(5) The Recording Activity dialog will be displayed with an empty grid.

NOTE: this recording session is going o be a little different from previous sessions. Previously we could interrupt our object-related recording/learning with other activities and because Rapise was
recording activity related only to the target application, our recording or object learning would be unaffected. However, in analog recording, Rapise is monitoring the mouse and keyboard for the entire
system - for all applications. This means that if you answer an email in the middle of analog recording, or log in to a secure system, all the steps including mouse movement, keystrokes, etc., will all be
recorded. However, note also that screen contents are not recorded by Rapise.

(6) If the TwoDialogs Ul has been occluded, bring it back to the front so you don't have to hunt for it when you start recording.

9/16/2014 Page 92 of 105

(7) When you're ready to record the session, hit Ctrl+4 on the Recording Activity dialog.

Recording Activity for " Tuvo Dialogs Sample”

Object Action Data Cornment

Press Chl+Break to Stop Analag Recarding

Your mouse and keyboard activity is now being recorded... [Transparert

NOTE: Pressing the Analog button on the Recording Activity dialog starts a relative analog recording session. Use the Ctrl+4 key sequence to start the absolute analog recording session.
Rapise will begin recording all mouse and keyboard activity until you stop the recording.
Note also that the prompt in the notification/status area of the Recording Activity dialog is different from that for relative analog. It tells you that "Your mouse and keyboard activity is now being recorded."

A minimized window will be created that indicates that analog recording is in progress and allowing you to stop the recording.

fAnangRecording EI (=] @

To finish recardingfplayback use 'Ctrl-Break’
shortcut or press 'Close’ button,

| Close |

(7) Go to the TwoDialogs AUT and click anywhere in the application's window to start the analog recording.

Click the mouse on the empty "Please enter your name" text box.

Type a name in the text box.

Hit the <tab> key or click the left mouse button to advance the input position to the second text box.
Type another name.

Move the mouse to the OK button and press the mouse left button.

(8) When you have recorded enough, switch to the Analog Recording dialog box and press the close button or hit the keys Ctrl+Break.

NOTE: If you use the "close" button on the Analog Recording dialog, the movement of the mouse to the Analog Recording dialog, and the mouse-click on the Close button will be recorded as part of the
analog recording output. This might not be a desirable outcome at playback time because the Analog Recording dialog will not be present and the mouse click will be played in a potentially random
place on the screen. For this reason, Ctrl+Break is probably a better option to terminate analog recording.

NOTE: The grid will have no entry added until you end the analog recording with the Close button in the Analog Recording dialog. When you do, it will add an entry to the grid.

Recording Activity for " Twa Dialogs Sarmple®

Obiject Action Data Comment

PR Please enter... Analog.. Analogiéna.. Plays recorded events from "Analogh4nalogQ002. arf'' file

[Veity(ote) | [Leam(Cbls2) | [Q SpulCti+B] | [Pick Object. | | Pause |
_Simulated - Cancel | [Finish (Cile3) |
Ready [Tranzparent

(9) You can now record additional analog sessions, if you wish.

(10) You can record normal object activity before and/or after the analog recording. When you have finished all recording press the Finish button or hit Ctrl+3. Notice that the Analog entry is added to
the grid.

(11) The Rapise screen will now be restored and will have placed focus in the editor pane of the Rapise with TwoDialogsAnalogAbsolute.js script displayed. You should see code something like the
following:

//Plays recorded events from "Analog\Analog0003.arf" file
SeS('Simulated’) .DoAnalogPlay ("Analog\\Analog0003.arf");
(12) Press the Play button on the Rapise toolbar to playback the recording you made. Be sure not to interfere with the mouse or keyboard whilst the recording is playing back.

NOTE: You will see all mouse and keyboard activity reproduced as the analog recording plays. The recording will start from the point where you left-clicked the mouse to begin the recording (step 7
above) and will end with clicking the close button in the Analog Recording dialog or at the last action before you pressed Ctrl+Break.

(13) When the analog playback is complete, use the mouse to move the Two Dialogs AUT to a different location on the screen. Play the recording again, and watch the operation unfold. The most
important thing to realize is that the absolute analog recording will playback the recording wherever the application is positioned on the screen wherever the AUT was positioned when you made the
recording. Absolute analog recording records relative to the top-left corner of the system screen. Try this for yourself, but be sure to minimize all applications before starting.

Do Relative Analog Recording Top Previous Next

Let's once again use our trusty over-simplified TwoDialogs sample application to learn how to use relative analog recording.

Steps:

(1) Run the TwoDialogs sample AUT. By default this will be located in C:\Users\Public\Documents\Rapise\Samples\TwoDialogs\TwoDialogs.exe

(2) Start Rapise and create a new test and call it TwoDialogsAnalogRelative.

(3) Press the Record/Learn button in the toolbar of Rapise.

(4) When the "Select an Application to Record" dialog is displayed, choose the TwoDialogs.exe application. Since we will not be using a library for this recording, the library selection is irrelevant. Press
the Select button.

(5) The Recording Activity dialog will again be displayed with an empty grid.

NOTE: this recording session is going o be a little different from previous sessions. Previously we could interrupt our object-related recording/learning with other activities and because Rapise was
recording activity only related the target application, our recording or object learning would be unaffected. However, in analog recording, Rapise is monitoring the mouse and keyboard for the entire
system - for all applications. This means that if you answer an email in the middle of analog recording, or log in to a secure system, all the steps including mouse movement, keystrokes, etc., will all be
recorded. However, note also that screen contents are not recorded by Rapise.

(6) If the TwoDialogs Ul has been occluded, bring it back to the front so you don't have to hunt for it during recording.

9/16/2014 Page 93 of 105

(7) When you're ready to record the session, hit the Analog button on the Recording Activity dialog.
NOTE: The key sequence Ctrl+4 starts an absolute analog recording session. Press the Analog button to start the relative analog recording session.
When you press the Analog button, two things will happen. Firstly, the status bar of the Recording Activity dialog will change to read, "Click on object to start analog recording."

After the next mouse click, Rapise is recording all mouse and keyboard activity until you stop the recording.
Secondly, a minimized window will be created that indicates that analog recording is in progress and allowing you to stop the recording.

finalog Recording EI =] @

To finish recardingfplayback use 'Ctrl-Break
shortcut or press 'Close' button,

| Clase |

(7) Go to the TwoDialogs AUT and click anywhere in the application's window to start the analog recording.

Click the mouse on the empty "Please enter your name" text box.

Type a name in the text box.

Hit the <tab> key or click the left mouse button to advance the input position to the second text box.

Type another name.

Move the mouse to the OK button and press the mouse left button.
(8) When you have recorded enough, switch to the Analog Recording dialog box and press the close button or press the key sequence Ctrl+Break. If you use the "close" button on the Analog Recording
dialog, the movement of the mouse to the Analog Recording dialog, and the mouse-click on the Close button will be recorded as part of the analog recording output. This might not be a desirable
outcome at playback time because the Analog Recording dialog will not be present and the mouse click will be played in a potentially random place on the screen. For thjis rason, Ctrl+Break is probably
a better option to terminate analog recording.

NOTE: The grid will have no entry added until you end the analog recording with the Close button in the Analog Recording dialog. When you do, it will add an entry to the grid.

Recording Activity for " Tuvo Dialogs Sample”

Object Action Diata Cornment

b Flease enter... Analog.. Analoghéna.. Plays recorded events from “AnaloghanalogQ002. art" file

[Verty(ote) | [Leam(Chls2) | [Qx SpyiCti+E] | [Pick Object. | | Pause]
_Simulated - | Cancel | [Firish (Cile3) |
Ready [Transparent

(9) You can now record additional analog sessions if you wish.
(10) You can record normal object activity before and/or after the analog recording. When you have finished all recording press the Finish button or hit Ctrl+3.
(

11) The Rapise screen will now be restored and will have placed focus in the editor pane of the Rapise with TwoDialogsAnalogAbsolute.js scrip displayed. You should see code something like the
following:

//Plays recorded events from "Analog\Analog0003.arf" file
Ses('simulated') .DoAnalogPlay ("Analog\\Analog0003.arf");
(12) Press the Play button on the Rapise toolbar to playback the recording you made. Be sure not to interfere with the mouse or keyboard whilst the recording is playing back.

NOTE: You will see all mouse and keyboard activity reproduced as the analog recording plays. The recording will start from the point where you left-clicked the mouse to begin the recording (step 7
above) and will end with clicking the close button in the Analog Recording dialog. If you used Ctrl+Break to end the recording then the last recorded activity will be the one that keystroke.

(13) When the analog playback is complete, use the mouse to move the Two Dialogs AUT to a different location on the screen. Play the recording again, and watch the operation unfold. The most
important thing to realize is that the relative analog recording will playback the recording wherever the application is positioned on the screen. This is because you used relative analog recording.
However, once the recording within the AUT is complete, all mouse motion and keyboard strokes are relative to the current position of the AUT. Suppose that during analog recording, you click the OK
button in TwoDialogs.exe, then move the mouse to terminate the recording using the analog recording Close button. Now, prior to playback, you move the AUT to a different location on the screen and
hit playback. All the activity within the AUT will be faithfully reproduced. However, the mouse motion outside the AUT will be relative to the position, so the following activities will not be accurately
reproduced. Try this for yourself, but be sure to minimize all applications before starting so you don't cause mouse events where they will do harm to other applications on the screen.

Learn an Object Top Previous Next

To illustrate learning an object, we return to the TwoDialogs sample.

First, let's learn the OK button using recording. We have done this before in the TwoDialogs sample.

Steps:

(1) Run TwoDialogs sample AUT. By default this will be located in C:\Program Files\Inflectra\Rapise\Samples\TwoDialogs\TwoDialogs.exe

(2) Start Rapise and create a new test and call it TwoDialogsRecording.

3) Press the Record/Learn button in the toolbar of Rapise.

4) When the "Select an Application to Record" dialog is displayed, choose the TwoDialogs.exe application and in the library list, select only the top library on the list - "Auto." Press the Select button.
5) In the TwoDialogs AUT, use the mouse to press the OK button. Dismiss the alert message box complaining about the empty name.

(
(6) Notice that two things will happen. Firstly, the OK button will be surrounded with a red marker, indicating that the OK button has been learned. Secondly, the action of clicking the OK button is
recorded in the Recording Activity dialog. That recording has a single entry.:

(
(

9/16/2014 Page 94 of 105

Recording Activity for " Twa Dialogs Sarmple®

Obiject Action Data Comment

PR oK Action Press button ‘0K

[Werify [Chrl+1]] [Learm [Chil+2)][Q} Spy(Chrl+5]] [Pick Dhject] [Pause]
Analag (Chil+d] _Sirnulated - Cancel | [Finish [Cte3) |

Last captured: win3ZButton (DF) [Tranzparent

(7) Press the Finish button (or press Ctrl+3) to end the recording.
(8) Rapise will return to be the foreground application, and it will have selected the TwoDialogsRecording.js (or whatever name you gave the test when you created it).

(9) Notice that there is a single line or script that has been added to the script file:
SeS('OK') .DoAction() ;

This line of script has two interesting parts.

The "SeS('OK’) is the identity (not the locator or location) of the OK button. This is the object that was learned during recording.

The "DoAction()" is the instruction to the running script to take the action associated with a button. A normal button has only a single possible action - to be pressed.
The Record/Learn process has taken both steps for you, and joined them together.

Now, let's use (normal) object learning to learn the same OK button and to call a method for the object.

Steps:

(1) Run TwoDialogs sample AUT. By default this will be located in C:\Program Files\Inflectra\Rapise\Samples\TwoDialogs\TwoDialogs.exe
(2) Start Rapise and create a new test and call it TwoDialogsLearn.

(3) Press the Record/Learn button in the toolbar.
(

4) When the "Select an Application to Record" dialog is displayed, choose the TwoDialogs.exe application. Leave the library selection in its default state - we will not be using it this time. Press Select.
Wait for the Recording Activity dialog to appear in the lower-right corner of the screen.

(5) Hover the mouse over the OK button of the TwoDialogs AUT but do not press the button.

(6) With the mouse positioned over the OK button, press Ctrl+2 (the "Learn" command). You will see the OK button surrounded with a red highlight. You will also see that the Recording Activity dialog
has been updated with a Learn event.

Recording Activity for " Tuvo Dialogs Sample”

Object Action Diata Cornment

1 ak. Leamn aK Learmed OK.

[VeityEie) | [Leam(Ctv2) | [SpyiCtis5) | [PickObjest. | | Pause]
_Simuated ~ [Cancd || Finshicuk3 |
Learning object: || Transparent

(7) Press the Finish button or Ctrl+3 to end the recording session. You will now see that Rapise has "learned" about the OK button, and the Object Tree in the upper left-hand pane of the Rapise has a
new entry called "OK" (shown here expanded). The list of items contained under the OK button entry in the Object Tree is the set of methods and properties available for the OK object. Methods are
listed with purple icons, read properties are listed with blue icons, and write properties are listed with blue and purple icons. Notice that the DoAction property is listed and recall in the previous section
when we recorded pressing the button, the DoAction method was chosen for the button-press action.

9/16/2014 Page 95 of 105

Obiject Tree 1
=[] Two Dialogs Sample ~
-] [1]:8 i
@ Dodction
DadinalogPlay
DoClick,
Dok nsureVisible
Dol ButtonD own
DolButtonUp
Dol Click.
Dol DClick
D obdButtonDown
DokdButtonUp
DokdClick.
DokDClick
Dobdousetdove
DoRButtonDown
DoRButtanUp =
DoRClick
DoRDClick
DoSendkeps
GetBitmap
GetB'whitmap
GetClase
GetHeight
Gethame
GetObjectType
GetState
Getyalue
Getw/idth
GetwindowT ext
Getx
s Gty
@ Setalue
@ SefwindowText

= W P}
4

VLIV UUVUIOUOUVYoooooooooovoooovd

13

(8) While we are looking at this OK object, let's make a few observations about it. These observations will be useful for your later dealings with Rapise and will make the script more informational and
relevant as you delve into Rapise. First, look down at the Properties box that appears under the Object Tree in the bottom left corner of the Rapise screen. The screenshot below has some of the tree
nodes expanded.

Froperties n
2x|%
B Locators [4] ~
(=] [3
Enabled true
Path 41
Window Clazs [paramwindow_class
Windaw Mame [] param:window_text
1 [3
2 (3
B3 13
Enabled truge
B Rectangle [7]
Class [param:ohiect_flavor
Height 26
Left m
Narne [param:ohiect_name
Rale [param:ohject_role
Top 172
width 75
Window Class [param:windaw_class
Window Mame [param:windaw_test
E Object
1o} ok
E Recognition
Clazs [] param:ohject_flavar
Ignore Object Name falze
Name ok
Fole ROLE_SYSTEM_WINDOW
Teut [param:object_name
=] ‘\'{lntiow 2

0

First, notice that the OK button has four (4) "locators" defined. When you have Rapise "learn" an object. it must collect data about that object so that it can relocate it even if the application has moved
on the screen, and even if the application is in a different state of execution. In order to accomplish this, Rapise looks for all useful ways to uniquely identify the object. As bad, or perhaps worse, than
not being able to find an object would be to find the wrong object on the AUT. Every time Rapise is required to locate this object, it will first try to use the first locator. If it fails to positively and uniquely
match with that locator, it will try the second, and so on. Rapise will not give up and declare failure until it has failed to identify with all available locators.

Second, notice the ID entry in the Object section of the pane. This is the name of the object from Rapise's perspective. All Rapise names are available through the SeS() function call. Therefore, if we
want to refer to the "OK" object, we will use SeS("OK") to refer to it. Once we have correctly identified the object, all valid methods and properties can be accessed by using that object as the basis.

Thirdly, notice in the main editor window of the Rapise, that no code has been added. When you identified the OK button, all Rapise did was add the new object to the Object Tree. It did not write any
code in the javascript file.
(9) In the automated (recorded) section above, you saw that when you pressed the OK button on the dialog, Rapise recorded a function like this:
SeS ("OK") .DoAction () ;
This time, you will use the established name of the OK button object, but do something a little more interesting than its default action to demonstrate how to use Rapise.
(10) Move the cursor into the editor part of the Rapise and make sure you are editing the file called TwoDialogsLearn.js. At the moment, this file still looks something like this:
/14t EEEE Script Steps HE#EEEHEHEHEEE

function Test ()

9/16/2014 Page 96 of 105

{
)
g_load_libraries=["Generic"l;
Between the open and close brace, add the following command:
SeS ("OK") .DoClick();
Hit the Play button and watch what happens.
The click will register as a command to the object and it will perform the action on the object.

While we have the context of this situation, let's complicate it just a little more to illustrate the intricacy as well as the flexibility of Rapise and SeS.

There is a method whose names looks interesting: DoLButtonDown().

If we were to invoke DoLButtonDown() on the "OK" object, we would expect this would be the same as DoClick().

However, go back to the AUT for a moment. Using the mouse, press the left mouse button over the OK button but don't take your finger off the left mouse button.
What happens is that the button takes its pressed state in appearance, but the button is not clicked.

The reason for this is that the DoClick() (or DoAction()) events cause the mouse button top be clicked as well as released.

Therefore, we would need to have a pair of events:

SeS ("OK") .DoLButtonDown () ;
Ses ("OK") .DoLButtonUp () ;

in order to make the "click" happen.

Try this in the test script you have created by adding those two lines of code in place of the DoClick() line.

It doesn't work!

Let's play a little with this problem.

When you press the Play button, leave the mouse alone. Just press the left mouse button on the Rapise Play button and take your hand away from the mouse.
The script does not press the OK button in the TwoDialogs AUT.

Now, press the Play button on the Rapise and quickly move the mouse to hover over the OK button in the TwoDialogs AUT.

Now it works!

What's going on here is that the DoLButtonDown() and Dol ButtonUp() methods are pressing the mouse irrespective of where the mouse cursor is positioned.
The other functions, DoClick and DoAction are methods that are applied to the button and so they are applied to the button.

Before we can expect DoLButtonDown() and DoLButtonUp() methods to work, we have to first the mouse cursor to the button.

function Test ()

{
SeS ("OK") .DoMouseMove (25, 15);
SeS ("OK") . DoLButtonDown () ;
SeS ("OK") .DoLButtonUp () ;

}

will accomplish that.
Notice that Rapise will actually move the mouse to the coordinates (25, 15) within the OK button. Also notice that if you move the mouse while the test is playing, you will make the test fail.

As a last experiment in this arena, try moving the mouse outside the boundaries of the OK button object before calling the DoLButtonDown() function.

function Test ()

{
SeS ("OK") .DoMouseMove (250, 150);
SeS ("OK") .DoLButtonDown () ;
SeS ("OK") .DoLButtonUp () ;

}

Once again, the script will fail.

Deal with a Simulated Object Top Previous Next

Example: The toolbox of Microsoft's Paint utility (c:\windows\system32\mspaint.exe) is a compound object that contains custom buttons and is surrounded by a containing box. To understand this
completely, start mspaint.exe from the Rapise.

Steps:

(1) Open a new test under Rapise.

(2) Press the Record/Learn button on the application bar.

(3) When the "Select an Application to Record" dialog appears, select the Run Application tab. Enter mspaint in the "Full path to application" edit box. Press the Run button.
If you are unfamiliar with MS Paint, take a few minutes to play with it.

In particular, notice the toolbox that appears in the upper-left margin of the utility and the colour selection box that appears on the bottom-left of the application window.

(4) Press Ctrl+5 to spy on the Ul. Press Ctrl+G to spy on the Paint application. Notice several things about the behaviour of the MS Paint applciation under SesSpy.

(i) As you move the mouse inside the tools box, the entire surrounding box will show a red highlight but the individual tool buttons will not.

(i) The same is true of the colour palette and the bottom-left of the screen.

(iii) As you move the mouse over the apparent buttons and controls, the information in the spy dialog is more sparse than for other applications. The tool buttons do not have default actions, and
they are not identified as buttons. Rather they are identified only as "child" objects.

This combination makes it impossible for Rapise to identify and learn the objects as integral objects.
Furthermore, notice that as you change the size of the Paint window, the relative positions of the colour palette and the tool box change.

The only way in which Rapise can be 'taught' these controls (and others we will discover later) is by "simulating” them as though they were buttons that can accept commands such as the press event.

In fact, Rapise will recognize these non-objects without you having to take particular action. Let's discover this and what it means:
(1) Open a new test under Rapise; call it MSPaint.
(2) Press the Record/Learn button on the application bar.

(3) When the "Select an Application to Record" dialog appears, clear all selection boxes in the library list box. You will have to scroll that section of the dialog box to make sure all selections are clear.
We are choosing no loaded libraries so that Rapise will not be able to "cheat" and know about any objects on the screen.

(4) select the Run Application tab. Enter mspaint in the "Full path to application" edit box. Press the Run button.

(Applications that reside in C:\windows\system32 can be started by their names because C:\windows\system32 must be in the system path.)
(5) When the Recording Activity dialog is displayed, press Learn (Ctrl+2)

(6) Do a small amount of things in Paint. For example:

(i) Click on the light-grey colour in the palette.

(ii) Click on the tipping paint-can (Fill with colour).

(iii) Click on the empty canvas.

(iv) Click on the red colour in the palette.

(v) Click on the "A" tool (Text).

(vi) Click in the canvas and type a few characters, such as "Hello."
(vii) Click in a blank place under the tool button.

(7) Look at the Recording Activity dialog grid. It will be something like this:

9/16/2014 Page 97 of 105

Notice that the two clicks in the canvas were recorded as "simulated" objects.

Notice also that the two pairs of clicks in the tools and colours sections were recorded as LClick (left click) in "Tools" and "Colors". However, there are no objects by these names. To find out where
these pseudo objects came from, we need to look in the file MSPaint.objects.js (the name will be the name you gave the test project). The following excerpt from the MSPaint.object.js shows the start of

the definition of the "Colors" object:
wvar saved script_chjects={

"Colorst:{
Mlocations™: [
{
"locator name: "Location®,

"logation™: {

Mlocation™: "4.4.4.1.4",

"window name":
"yindow class™:

Mparam: window text™,

"param: window olass™

"locator_nswe™: "LocationPath',

"location™: {
"uindow_nawe
"window_class":

"param: window _text",

"parami window_class",

fpath™: [

{
"object _name": "parsm:object name",
"object_class": "param:object_class",
"object_role': "param:object_role"

Y

{
"object _name": "parsm:object name",
"object_class": "param:chject_class",
"object_role”: "ROLE STSTEM WINDOW"

Y

i
"objest_name™: "param:chiect_name",
"object_wolass": "AfxControlBardzu”,
"object_role™: "param:ohlect_role”

(8) Press Ctrl+3 to end the recording.

Technologies

This section focuses on specific technologies supported by Rapise.

Adobe Flex

Purpose

Rapise includes support for Adobe Flex applications executed
o inside Adobe Flash Player in Internet Explorer or Firefox

« and Adobe Integrated Runtime (AIR).
Flex versions 3 and 4 are supported.

Usage

Recording Activity for "Untitled - Paint"

Obiject Action Data Comment

P Calars L Click. 172,84 User clicks at: 172, 84 in ‘Colors'

i) Fill with calar L Click. 510 User clicks at: 5, 10 in 'Fill with color'

b] Sirmulated L Click. 42211 User clicks at: 422,111 in "

T4 Calars L Click. 158,84 User clicks at: 158, 84 in ‘Colors'

bl] Toolz L Click, 45,82 User clicks at: 45, 82 in 'Tools'

TAE Simulated L Click, 336,83 User clicks at: 336,89 in"

W7 Toolz L Click, 37.83 User clicks at: 37, 83 in 'Tools'

e Teut L Click. 373163 User clicks at: 373, 169 in Text!

b} Simulated LClick 267165 User clicks at: 267, 165in "

bl Untitled - Paint ~ Sendk... Hello Type

bRl Global Sendr... {ENTER} Type

[veilyEne) | [LeamiCuk2) | [S SpyiCtlsS) | [Pick Object.. | | Pause]
Analog [Child] _Simulated - | Cancel | [Finish o) |

Lazt captured: SeS5imulated (1) [Transparent

Top Previous Next

Top Previous Next

To test Flex applications, you must have Flex Builder installed. Link your application with FlexAdapter.swc (part of Rapise) and automation_agent.swc and automation.swc (part of Flex Builder).

The compiler arguments for FlexBuilder 3 should look like:

-include-libraries "C:/Program Files/Adobe/Flex Builder 3/sdks/3.2.0/frameworks/libs/
automation_agent.swc" "C:/Program Files/Adobe/Flex Builder 3/sdks/3.2.0/frameworks/libs/

automation.swc" "C:/Program Files/Inflectra/Rapise/Extensions/Flex/FlexAdapter/bin/FlexAdapter.swc"

The compiler arguments for FlashBuilder 4 should look like:

-include-libraries "C:/Program Files/Adobe/Flash Builder 4/sdks/4.0.0/frameworks/libs/
automation_agent.swc" "C:/Program Files/Adobe/Flash Builder 4/sdks/4.0.0/frameworks/libs/

automation.swc" "C:/Program Files/Inflectra/Rapise/Extensions/Flex/FlexAdapter/bin/FlexAdapter.swc"

Note: You can avoid linking with third-party libraries if your application is browser-based and you will use FlexLoader.

9/16/2014

Page 98 of 105

Adobe Flash Player

Adobe Flash Player has restricted security settings for SWFs opened from the file system. To enable testing of such SWFs, their corresponding folders must be listed in the FlashPlayerTrust directory.
You can find the FlashPlayerTrust directory here:

<system>\Macromed\Flash\FlashPlayerTrust

to enable testing just for the current user, use this FlashPlayerTrust directory:
<ApplicationData>\Macromedia\Flash Player\#Security\FlashPlayerTrust

To register your SWF just create a file with the name "<name of your SWF>.cfg" and put it in this directory. In the file, write a path to the SWF folder.

Note: If you do not have FlashPlayerTrust directory in one of locations listed above then you will have to create missing directories yourself.

Adobe AIR

To record and playback tests for Adobe AIR application you need to run the application manually. E.g.:

"C:\Program Files\Adobe\Flex Builder 3\sdks\3.2.0\bin\adl.exe" C:\Program Files\Inflectra\Rapise\Samples\AdobeFlex3\AUTFlexAIR\bin-debug\AUTFlexAIR-app.xm!
Sample Applications and Test
Two sample Flex 3 applications are available with the Rapise installation. They can be found at:

<Rapise install dir>/Samples/AdobeFlex3/AUTFlexFP/bin-debug/AUTFlexFP.html

and

<Rapise install dir>/Samples/AdobeFlex3/AUTFlexAIR/bin-debug/AUTFlexAIR-app.xml

The binaries and source are both provided.
One sample Flex 4 applications is available with the Rapise installation. It can be found at:

<Rapise install dir>/Samples/AdobeFlex4/AUTFlexFP4/bin-debug/AUTFlexFP.html

The binaries and source are both provided.

Sample tests for the sample applications can be found in <Rapise install dir>/Samples/AdobeFlex3 and <Rapise install dir>/Samples/AdobeFlex4. To select the target for testing edit the following line in
AdobeFlex.user js file:

Jx
* Select flex target for testing.
*/

var testTarget = "FlexIE"; //"FlexAIR", "FlexFirefox", "FlexIE"

Note: If you choose AIR target, please, do not forget to run the sample application before executing the test.

See Also
* Tutorial: Testing Adobe Flex Applications

Cross Browser Testing Top Previous Next

You can run your recording in a different browser than the one in which it was recorded.

Selecting a new Playback Browser
First, open the script for your test using the Test Files Dialog. Locate the line where g_load_libraries is initialized.

Under the Hood

It is possible to have more control about cross browser execution using available APIs and configuration variables You can also run the recording in multiple browsers in succession. Both options
require modification of the script. The necessary modifications are described below. First, open the script for your test using the Test Files Dialog. Locate the line where g_load_libraries is initialized.

If you recorded your script in |IE you will see:

g_load_libraries=["%g_browserLibrary:Internet Explorer HTML%"];

If you recorded it in Firefox, you will see:

g_load_libraries=["%g_browserLibrary:Firefox HTML"];

This line tells Rapise to use the browser library specified in the special g_browserLibrary variable setting, and if no value is set, default to the named browser (Internet Explorer or Firefox in this

example).

Changing the Playback Browser

In the File explorer pane of Rapise, choose the Settings tab:

E Settings
Metadata CUsers\Publich\Documents'\Shared
CbjectsPath TwoDialogsTest objects js
ReportPath TwoDialogsTest tp =
ScriptPath TwoDizlogsTest js
CUsers\PublichDocuments’\Shared
UserFunctionsPath TwoDizlogs Test user js L 4

Expand the Test Params option and click on the Browser dropdown list:

9/16/2014 Page 99 of 105

»

CommandLine
EntryPaint Test
4 TestParams 5 items 3
Intemet Explorer HTML [=]
Record Title Intemet Explorer HTML

ServerProjectId Firefoxt HTML
ServerTestCaseFoldgChrome HTML
ServerTestCaseld &

4 Execution
CacheObjects Falze
Command interval 1000
teration Court 1 il
Olbicot] ol Mot lmte_ 200

Change the browser to either Firefox, Internet Explorer or Chrome.
Once you have changed this setting, Playback the script normally and it will playback in the selected browser.
Changing this setting will effectively set the value of the g_browserLibrary global variable.

Playback in Multiple Browsers - SpiraTest

Executing a test in multiple browsers is slightly more complicated. We recommend that you use SpiraTest 'Test Sets' where you may define multiple test cases pointing to the same Test with a different
g_browserLibrary parameter value.

The separate help document "Using SpiraTest with Rapise" provides specific instructions on using Rapise with SpiraTest to handle the specific case of cross-browser testing as well as more general
support for parameterized testing.

See the SpiraTest Integration topic for more general information on using Rapise with SpiraTest.

Playback in Multiple Browsers - SubTests
As another option, it is also possible to use sub-tests to organize multi-browser testing where a single test executes itself in different browsers one after another.

Record base test. Put all the recorded actions into a User-defined function and place it into <testname>user.js file. For example, function rogin () inside file MyTest.user.js.
Create Sub-Test for IE re-using objects and functions from the base test
. Modify script file in sub-test as follows:

wh =

function Test ()

{
// Re-use 'Login()' scenario from parent test
Login();

g_load libraries=["Internet Explorer HTML"];

Create Sub-Test for Firefox re-using objects and functions from parent test
. Modify script file in subtest as follows:

o

function Test ()

{
// Re-use 'Login()' scenario from parent test
Login();

g_load_libraries=["Firefox HTML"];

As a result you have a test for 2 browsers: IE an Firefox. Each browser is defined by a library in a corresponding sub-test. Rapise contains the Cross Browser sample using this approach.

Qt Framework Top Previous Next

Purpose

Rapise includes support for testing applications written using the Qt Framework written using QWidget controls.

Usage

Rapise fully supports the test automation of Qt based applications. To ensure that Rapise can access the Ul elements and properties in the Qt application, MSAA (Microsoft Active Accessibility) support
for your Qt application must be enabled. This provides additional information on Qt Ul elements to automation software like Rapise and can be accomplished by shipping and loading the "Accessible
Plug-in" included in the Qt SDK (Software Development Kit) with the Qt application under test (see below).

Loading Accessible Plug-in for your Qt application:
1. Copy the "accessible" directory (and all its contents) from the Qt SDK (used to build the application under test) installation folder to the folder of the automated application (e.g. “Program

Files/Your-Application/plugins”). If you do not have access to the Qt SDK which the Qt application is developed with, please contact the developer of the application and request the "accessible"
directory from him.

2. Create a file called "qt.conf" (or append if the file already exists) in the root directory of the automated application (e.g. "Program Files/Your-Application") with following content (copy and paste the
following two lines):

[Paths]
Plugins = plugins

Java AWT/Swing Testing Top Previous Next

Purpose

?\e/lslise supports the testing of Java applications using either the Abstract Window Toolkit (AWT) or Swing graphic user interface toolkits. For maximum flexibility, Rapise can connect to your choice of
Usage

In order to use a particular Java Virtual Machine (JVM) with Rapise you need to install Java Bridge into it. Installation process consists of several simple steps:

1. Click the Options icon in the Tools group of the main Rapise ribbon. That will bring up the Options dialog.

2. Click on the Tools > Java Settings button. This will launch the Java Bridge installation dialog:

9/16/2014 Page 100 of 105

3. Choose target JVM in the list of available Java machines and press Install button
4. Verify that installation is successful

Extensibility Top Previous Next

The Extensibility section is for experienced Rapise users who want to extend capabilities of the tool.
Tutorial: Custom Library Top Previous Next

In this section, you will learn how to create a Custom Library and add support for a third-party GUI control to Rapise. We will be using a demo application called CustomControlApp. Our Custom Library
will be simple. It will allow to Record and Learn objects of CustomListboxControl type and also Playback actions for this type of objects. This tutorial is complemented by a ready test CustomControlTest
which you'll be able to examine and run.

Tutorial Data

o CustomControlApp folder: C:\Program Files\Inflectra\Rapise\Samples\Extensibility\CustomLibrary\CustomControlApp. You may build this application yourself in Microsoft Visual Studio (C++) or use
ready executable: <CustomControlApp folder>\Release\CustomControlApp.exe

e CustomControlTest folder: C:\Program Files\Inflectra\Rapise\Samples\Extensibility\CustomLibrary\CustomControlTest

e CustomlLibrary file: C:\Program Files\Inflectra\Rapise\Samples\Extensibility\CustomLibrary\CustomLibrary.js

If you prefer active experimentation learning style you may first skip to subsection 9 and after playing with the ready test and library start reading from the beginning.

1. Application Under Test

CustomControlApp contains an object of type CustomListboxControl. The control is similar to a single-select listbox, but each line item has a corresponding progress bar indicator indicating a current
value. Using the left/right cursor keys you can change the value of the currently focused item.

If you will try to record a test for CustomControlApp using just Generic library you'll see that CustomListboxControl is treated as Simulated Object and all interactions with it are recorded as mouse clicks
and key presses. For some tests such functionality is sufficient, but if you want to be able to recognize CustomListboxControl as a list, get its items, select an item by name, set value for a particular item
you need to create a Custom Library.

Recording activity for "CustornContral&pp”

Object Action Data Comment
i String 2 LClick 1835 Mousze click at: 189, 5 in ‘String 2
Global Sendk. {RIGHT} Type
Global Sendk. {RIGHT} Type
Global Sendt... {RIGHT} Type

| Lleam(Ctri+2) | |&x Spy(Cti+5) || PFick Object. || Pause |
| analog (Ctri+4) | | _Simulated 1= | Cancel || Finish [Ctri+3) |
|lastcaptured: SeSSimulated [CustomContralipp) |:| Tranzparent J

2. LibUser

A good place to start implementing a Custom Library is empty LibUser library included into Rapise. All Rapise libraries live in C:\Program Files\Inflectra\Rapise\Engine\Lib folder and LibUser is not an
exception. LibUser library consists of two files:

1. C:\Program Files\Inflectra\Rapise\Engine\Lib\LibUser.jslib which is a library declaration file.
2. C:\Program Files\Inflectra\Rapise\Engine\Lib\LibUser\LibUser.js which is a library definition file.

3. Open Engine.sstest

9/16/2014 Page 101 of 105

Open the Engine.sstest project in Rapise (it is usually located in the C:\Program Files (x86)\Inflectra\Rapise\Engine folder). Then find LibUser.js in the project tree and open it. You are about to start
implementing a Custom Library to support CustomListboxControl.

4. Analyze CustomListboxControl in Spy

Launch CustomControlApp and open Spy. Using the Accessible option in the Spy tool, spy on the CustomListboxControl. It is easy to see that CustomListboxControl has the following accessibility tree:
ROLE_SYSTEM_WINDOW top node contains ROLE_SYSTEM_LIST child that in its turn may contain zero to many ROLE_SYSTEM_SLIDER nodes.

5. Create Matcher Rule for CustomListboxControl

With knowledge of CustomListboxControl accessibility tree we can create a matcher rule that will make CustomListboxControl recognizable by Rapise. Write the following code into LibUser.js:
new SeSMatcherRule (
{
object_type: "CustomListboxControl",
object_flavor: "List",
behavior: [Win32ItemSelectable, Win32CustomListboxControl],
role: "ROLE_SYSTEM WINDOW",
or_rules: [
{
role: "regex:ROLE_SYSTEM LIST",
save_to: "list",
or rules: [
{
role: "ROLF‘.?SYS'T‘F‘.MisLTDF‘.R" ’
zero_to_many: true,
save_to: "items"

1

Each matcher rule (instance of SeSMatcherRule) is a tree like structure that describes a particular GUI control type. Each node in this tree is a rule object that is defined by the following simplified
grammar:

or_rules: (rule)+

and_rules: (rule)+

rule:
role
[save_to]
[zero_to_many]
[or_rules]
[and_rules]

object_type: the string that uniquely identifies this matcher rule and designates type of the control

object_flavor: visual type of the control, it is used to show an appropriate icon in the Object Tree and to filter actions and properties in composite behavior patterns (like in Adobe Flex, see
FlexActions.js)

« behavior: array of behavior patterns that define object actions, properties and events.

.

9/16/2014 Page 102 of 105

role: accessibility role of the corresponding node in the accessibility tree of the control. The role equals to a Role of the accessible element as displayed in the Spy.

or_rules: array of rules (defining child nodes) joined with logical OR. Any OR rule can be satisfied to consider child nodes matched.

and_rules: array of rules (defining child nodes) joined with logical AND. All AND rules must be satisfied to consider child nodes matched.

save_to: SeSObject created for accessibility tree node corresponding to this rule is assigned to the field with "save_to" name of the top level SeSObject. l.e. if rule has save_to: "items" element then
you can access learned element using SeS('ObjID').items. In many cases such named fields are used in behavior patterns.

zero_to_many: if this property is present in the rule and set to 'true' then it means that parent rule may contain from zero to many of child nodes that match this rule.

e o o o

6. CustomListboxControl Behavior

After defining the matcher rule we can proceed to behavior patterns. Behavior patterns operate with SeSObject contents, so they should not be aware about accessibility tree of the underlying GUI control
and thus the same behavior pattern can be assigned to different matcher rules. There are a plenty of behavior patterns defined in SeSBahavior.js. After looking at those patterns it is possible to notice
that Win32ItemSelectable pattern is the one that perfectly suites for capturing selection accessibility events and for selecting list items. This pattern contains OnSelect event that is called during recording
when an item is selected in list and DoSelectltem action used to select desired item during playback.

But using just Win32ItemSelectable behavior pattern is not sufficient. It does not support recording of progress bar value change events and it does not support setting progress bar value during
playback. That is why we need to define new behavior pattern: Win32CustomListboxControl. Look at its code:

var Win32CustomListboxControl =

{

actions: [
{
actionName: "SetItemValue",
DoAction: function(/**String*/ itemName, /**Number*/ value)
{

var item = this.findItemByName (itemName);

if (null!=item)

{
item.getTopObject () .instance.HWND.SetForegroundWindow () ;
item.instance.Value = value;
return true;

return false;

}
i
{
actionName: "GetItemValue",
DoAction: function(/**String*/ itemName)
{

var item = this.findItemByName (itemName) ;

if (null!=item)

{
return item.instance.Value

}

return null;

}
}
1,
events:
{
OnvValueChange: function(/**SeSObject*/ param)

{
var itemName = param.name;
if (12) Log2 ("OnValueChange: "+itemName) ;
var item = this.findItemByName (itemName) ;
if (null!=item)
{
var value = item.instance.Value;
RegisterAction(this, param.name, "SetItemValue", parselnt(value), "Set item:'"+param.name+"' to "+value+" in '"+this.name+"'");
}
return;

During recording process OnValueChange function captures progress bar change events and calls RegisterAction function that adds SetltemValue action to the test.
7. CustomListboxControl Specific Accessibility Events
What accessibility events are fired when a user changes the progress bar value? You can use Spy to find out. Launch CustomControlApp and open Spy window. Spy on CustomListboxControl. Choose

Monitor Events...

G SeS Spy

|@ Start Tracking (Ctrl-G) |

jAccessible Dhject

jTrEe jPrUperties

=l [ROLE_S¥STEM_LIST] - HiwMD [CustomListbox «
+}- String 1[ROLE_SYSTEM_ H IndexlnParen 0
+ String 2[ROLE_SYSTEM_ LocationREC {x=411.v=328\
+- String I[ROLE_SYSTEM_ Name

¥ String 4[ROLE_SYSTEM_ ok ROLE_SYSTER
~ State 1]

1 3 Value -

= | HiAND Object

jTree jProper’ties

Parent 484: 264 -
any
Mouse Click ssible0E [ROLE_STSTEL
o Mame CustomListbo:C
Highlight 411,328, 484, ¢
Maonitar Events,.,
True -

You will see Accessible Events dialog:

9/16/2014 Page 103 of 105

Accessible Bvents =]

Type Aac hiw

] skin Ighore Mouse Move -

Select an item in CustomControlApp and advance its progress bar using right key. Accessible Events dialog will show you captured events:

Accessible Bvents =]

Type Aac htwind

1 EVEMT_SYSTEM_FOREGROUND ROLE_SYSTEM_wINDO'W /sizeable moveable focusable 0+00170a38 Oxf
2 EVEMT_OBJECT_FOCUS ROLE_SYSTEM_CLIENT #acusable 0+00170a38

3 EVEMT_OBJECT_FOCUS ROLE_SYSTEM_LIST focused focuzable 00007188

4 EVENT_OBJECT_SELECTION ROLE_SYSTEM_SLIDER /selected focused focusable selectable 00007188

5 EVEMT_OBJECT_FOCUS ROLE_SYSTEM_SLIDER /selected focused focusable selectable 00007188

B EVEMT_OBJECT _VALUECHAMGE ROLE_SYSTEM_SLIDER /selected focused focusable selectable 00007188

7 EVEMT_OBJECT _VALUECHAMGE ROLE_SYSTEM_SLIDER /selected focused focusable selectable 00007188

8 EVEMT_OBJECT _VALUECHAMGE ROLE_SYSTEM_SLIDER /selected focused focusable selectable 00007188

3 EVEMT_OBJECT_MAMECHANGE ROLE_SYSTEM_CURSOR Alaating 0x00000000

] m *

] skin Ighore Mouse Move -

You can see that changing progress bar leads to generation of EVENT_OBJECT_VALUECHANGE events.

Not all accessibility events a processed and propagated by Rapise engine. EVENT_OBJECT_VALUECHANGE is one of such events. To consume this event and make an appropriate call to
OnValueChange of Win32CustomListboxControl you need to add and register ibility event handl,

function CustomRegisterAccessibleEvent (evt, etxt)

{

if (etxt.indexOf ("EVENT OBJECT_VALUECHANGE")>=0)
{
var ao;
try
{
ao = evt.AccessibleObject;
if (!_SeSisValidObject(ao)) return false;
}
catch (e)
{
Log ("Error getting event object:"+e.Description+"/"+etxt);
return false;
}

var ro = SeSCacheAccessibleObject (ao);
if (13 && ro) Log3("CustomListboxControl: " + ro.toString());

if (ro != null && ("OnValueChange" in ro))
{
ro.onvalueChange () ;
}
return true;
}
return false;

)

g_customEventHandlers.push (CustomRegisterAccessibleEvent) ;

8. Record and Playback
Now you are ready to record and playback a test. Just remember that in Select an Application to Record dialog you need to uncheck Auto library and select User and Generic libraries.

Library Description

¥ User Default user-defined librany

[~ Console Console Application

¥ Generic Geneticlibrary contains basicdefinitions formostcamm..,
[MEOffice Microsoft Office with Accessiility

9. CustomControlTest

This tutorial is complemented by a ready test CustomControlTest which you can examine and run. Open CustomControlTest in Rapise and place contents of CustomLibrary file into LibUser.js file
(C:\Program Files\Inflectra\Rapise\Engine\Lib\LibUser\LibUser.js). LibUser.js is added to CustomControlTest, so you can populate it with CustomLibrary code right in Rapise.

9/16/2014 Page 104 of 105

Test Files 7
=1 Test
=1 Application
3 CustomContralipp.exe
=] Lib
CustomLibranys
Liblser.js

4] Reports

=1 Seripts

CustomControlTestjs
CustomControlTest.objects js
CustomControlTest.users

Tip: It is possible to launch CustomControlApp right from Rapise, just double click on CustomControlApp.exe in the project tree.

10. Wrap-up: Implementation Sequence

Full support for a custom object requires support for Record, Learn and Playback. Let's go over created library and specify the purpose of each component in it.

Matcher Rule:- it is used to recognize the object inside an application, required for Record, Learn and Playback.

Events in Behavior Patterns: handling events is required for Record.

Actions in Behavior Patterns: actions are used to examine or change state of the control, required for Playback.

Custom Accessibility Event Handler: required for Record if some important events are not processed by Rapise engine as needed.

9/16/2014 Page 105 of 105

Legal Notices

This publication is provided as is without warranty of any kind, either express or implied, including, but not
limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
added to the information contained herein; these changes will be incorporated in new editions of the
publication. Inflectra Corporation may make improvements and/or changes in the product(s) and/or
program(s) and/or service(s) described in this publication at any time.

The sections in this guide that discuss internet web security are provided as suggestions and guidelines.
Internet security is constantly evolving field, and our suggestions are no substitute for an up-to-date
understanding of the vulnerabilities inherent in deploying internet or web applications, and Inflectra cannot
be held liable for any losses due to breaches of security, compromise of data or other cyber-attacks that
may result from following our recommendations.

Rapise® and Inflectra® are either trademarks or registered trademarks of Inflectra Corporation in the
United States of America and other countries. All other trademarks and product names are property of
their respective holders.

Please send comments and questions to:
Technical Publications
Inflectra Corporation
8121 Georgia Ave, Suite 504
Silver Spring, MD 20910-4957
US.A.

support@inflectra.com

© Copyright 2006-2014, Inflectra Corporati Page 106 This document contains Inflectra proprietary information

