

Date: May 4th, 2017

Rapise® | Web Service Testing Tutorials

Inflectra Corporation

Page 1 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Contents

Introduction ... 1

1. Testing REST Web Services 2

1.1. What is REST and what is a

RESTful web service? 2

1.2. Overview 2

1.3. Using the REST Query Builder .. 2

1.4. Saving the REST Requests as

Objects .. 9

1.5. Generating REST Test Scripts 11

1.6. Writing REST Test Scripts 16

2. Testing SOAP Web Services 19

2.1. What is SOAP and what is a

SOAP web service? 19

2.2. Overview 19

2.3. Inspecting the SOAP WSDL

Endpoint .. 19

2.4. Invoking the SOAP Actions 22

2.5. Generating the Rapise Test

Script ... 24

Introduction

Rapise® is a next generation software test

automation tool that leverages the power of

open architecture to improve application quality

and reduce time to market.

This guide provides a quick step-by-step tutorial

for creating a sample Rapise tests that can test

the two main different types of web service –

SOAP and REST.

For further information on using Rapise, please

refer to the more comprehensive Rapise User

Guide. For information on using Rapise in

conjunction with our SpiraTest test management

system, please refer to the Using Rapise with

SpiraTest Guide.

Rapise contains a built-in web service module
that can currently test the following types of web
service:

1. REST Web Services - Rapise contains a
built-in REST definition builder and object
library that allows you to prototype out
your REST web service requests, inspect
the returned HTTP headers and HTTP
response body and then covert into a
parameterized set of Rapise objects that
can be scripted against in the main
Rapise JavaScript editor. It also includes
built-in support for verifying the data
returned as Rapise checkpoints.

2. SOAP Web Services - Rapise contains a
built-in SOAP request tester and object
library that allows you to prototype out
your SOAP web service requests, inspect
the returned HTTP headers and SOAP
response body and then covert into a
parameterized set of Rapise objects that
can be scripted against in the main
Rapise JavaScript editor. It also includes
built-in support for verifying the data
returned as Rapise checkpoints.

Page 2 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

1. Testing REST Web Services

In this section you shall learn how to test a RESTful web services API using Rapise. We shall be using a

demo application called Library Information System that has a dummy RESTful web service API

available for learning purposes. You can access this sample application at

http://www.libraryinformationsystem.org, and its RESTful web service API can be found at:

www.libraryinformationsystem.org/Services/RestService.aspx.

1.1. What is REST and what is a RESTful web service?

REpresentational State Transfer (REST) is a style of software architecture for distributed systems such as

the World Wide Web. REST has emerged as a web API design model that offers greater simplicity over

other web service protocols such as SOAP and XML-RPC.

A RESTful web API (also called a RESTful web service) is a web API implemented using HTTP and

REST principles. Unlike SOAP-based web services, there is no "official" standard for RESTful web APIs.

This is because REST is an architectural style, unlike SOAP, which is a protocol.

1.2. Overview

Creating a REST web service test in Rapise consists of the following steps:

1. Using the REST query builder to create the various REST web service requests and verify that
they return the expected data in the expected format.

2. Parameterizing these REST web service requests into reusable templates and saving as Rapise
learned objects.

3. Generating the test script in Javascript that uses the learned Rapise web service objects.

We shall discuss each of these steps in turn.

1.3. Using the REST Query Builder

Create a new test in Rapise called MyRestTest1.sstest.

• For Methodology, choose Basic: Windows Desktop Application and Rapise will create a new

blank test project. If you plan on using a combination of Web or Mobile UI tests in the same script,

you could choose one of the other types.

• For Scripting Language, choose JavaScript. The scriptless Rapise Visual Language (RVL) can

be used with web service tests, but it means that al the web service tests need to be in a

JavaScript subroutine / scenario that is called from the RVL test.

Rapise will create a new blank test project.

Once you have created it, click on the "Web Services" icon in the Test ribbon to add a new web service

definition to your test project:

This will display the Add New Web Service dialog box:

http://www.libraryinformationsystem.org/
http://www.libraryinformationsystem.org/Services/RestService.aspx

Page 3 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Choose REST as the type of web service you want to create.

Then. enter the name of the web service that you're going to add, in this case enter

"LibraryInformationSystem.rest" and click "Create". This will add the REST web services definition file

to your test project:

You will see on the right hand side, there is a new document editor for the .rest file. This is the REST web

services query form. It lets you send test HTTP requests to the web service under test and inspect the

output being returned.

If you open up API documentation for our sample application

(www.libraryinformationsystem.org/Services/RestService.aspx) you will see that it exposes several

operations for retrieving, adding, updating and deleting books and authors in the system. For this tutorial

we shall perform the following operations:

1. Get the special SessionID to identify our test session
2. Get a list of books in the system
3. Add a new book to the system and verify that it was added

According to the documentation that means we will need to send the following requests:

(i) Get a Unique Session

URL: http://www.libraryinformationsystem.org/Services/RestService.svc/session

Method: GET

Returns: Unique session ID that is passed to other requests to keep data separate for different demo

http://www.libraryinformationsystem.org/Services/RestService.aspx

Page 4 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

users

(ii) Get this list of books

URL:
http://www.libraryinformationsystem.org/Services/RestService.svc/book?session_id={session_

id}

Method: GET

Returns

:
Array of book objects

(iii) Add a new book to the list

URL:
http://www.libraryinformationsystem.org/Services/RestService.svc/book?session_id={session_

id}

Method: POST

Body:

Pass a populated book object:

 {

 "Name": "Book Name",

 "AuthorId": 1,

 "GenreId": 1,

 }

Returns

:
Single book object that has its BookId populated

The first request will be to get the unique session ID that we will need to pass to the other requests. This

is needed by our sample application to prevent testing by different users interfering with each other. To

create this request, simply enter the following information on the REST Request form:

• Name: Get_Session

• Method: GET

• URL: http://www.libraryinformationsystem.org/Services/RestService.svc/session

You should now have it populated as illustrated below:

This web service request requires that we pass credentials by means of HTTP Basic authentication. So

click on the "REST" tab in the Rapise ribbon and click on the "Add Credentials" button.

Page 5 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

This will display the "Add Credentials" dialog box:

Enter librarian as both the username and password and click "Add".

Now click the "Send" button and the request will get sent to the web service:

The Response Header tab will display the headers coming back from the web service. The Status Code

200 OK means that the request succeeded and that data was returned. If you click on the "Response

Body - XML" tab, you will see the XML serialized data returned from the web service:

Since Rapise uses JavaScript as its scripting language, it is usually easier to work with JSON (JavaScript

Object Notation) serialized data rather than XML. In the case of the sample Library Information System

Page 6 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

web service, you can change the format that it accepts and retrieves by sending two special HTTP

headers:

• Content-Type: application/json

• Accept: application/json

To add these headers to the request, simply click on the "Add Header" button in the REST ribbon tab.

This will display the following dialog box:

Choose the HTTP Header "Accept" from the list and enter "application/json" as the value. Repeat for

the "Content-Type" header. You should now have the following populated request:

Now click the "Send" button and the request will get sent to the web service:

The Response Header tab will display the headers coming back from the web service. Note that the

returned Content-Type is listed as "application/json" as requested. If you click on the "Formatted JSON"

tab, you will see the JSON serialized data returned from the web service:

Page 7 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

We have now completed the creation of our first test operation. Click on the "Save Requests" button in

the Rapise REST Ribbon to make sure our changes have been saved.

Now click on the "Clone request" icon in the REST request explorer in the left-hand side of the screen:

This will display the Clone Request dialog box. This lets us create a new REST request that contains the

headers and authentication already defined on our existing request. This will save time over creating a

new REST request from scratch:

Enter the name "Get_Books" in the dialog box and click the "Clone" button. This will create a new REST

request with this name:

For this request, we need to pass through the SessionID in the querystring. Rather than hardcoding it in

the URL, we can make use of the parameterization feature of Rapise. Click on the "Add Parameter"

button in the Rapise REST Ribbon. This will display the "Add Request Parameter" dialog box:

Page 8 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Enter in the following:

o Name: session_id

Value: 82499bcc-37e4-4c64-820e-a2d798cd1e84

(you can also copy and paste the value returned by the Get_Session command)

Now, click the "Add" button and the parameter will be added to the request.

Next, change the URL to:

http://www.libraryinformationsystem.org/Services/RestService.svc/book?session_id=

Then position the caret at the end of this URL and click the "Insert in URL" button. This will insert the

parameter token in the URL at the specified point:

Now click the "Send" button and the request will get sent to the web service. This will return the list of

books serialized as a JSON array of objects:

We have now completed the creation of our second test operation. Click on the "Save Requests" button in

the Rapise REST Ribbon to make sure our changes have been saved.

Page 9 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Now click on the "Clone request" icon in the REST request explorer in the right-hand side of the screen.

Enter the name "Add_Book" in the dialog box and click the "Clone" button. This will create a new REST

request with this name:

This operation will add a new book to the system, so it's a POST request. Change the Method type in the

dropdown list from "GET" to "POST".

Expand the "Body" field on the form. This is where you can enter in an XML or JSON serialized Book

record that will get added to the system. For now we'll leave this blank and let Rapise serialize the body

for us later on when we actually write our test script. So we should now have:

We have now completed the creation of our third test operation. Click on the "Save Requests" button in

the Rapise REST Ribbon to make sure our changes have been saved.

1.4. Saving the REST Requests as Objects

Now that we have created our three REST requests, the next step is to actually create the Rapise objects
that we can use in our JavaScript test scripts. Click on the "Update Object Tree" button in the Rapise
REST Ribbon to tell Rapise to update the Object Tree with our new requests:

Page 10 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Rapise will open a command prompt window in the background and then display a confirmation message
once the Object Tree has been updated. Click on the "Object" tab of the main Rapise explorer, then right-
click on the Object-Tree root node to bring up the context menu:

Click on the Refresh icon and you will see the "LibraryInformationSystem" heading displayed, with the
three saved REST request listed underneath:

If you expand one of the REST requests (e.g. Add_Book), you'll see that it has a single operation
"DoExecute" that executes the web services and a series of properties available for inspecting or
updating any part of the REST request prior to it being sent to the server.

In the next section we shall illustrate how you can write a test script using these learned objects:

a) You can either have Rapise generate test scripts and verification points automatically (described in
section 1.5), or

b) You can manually write the test scripts using the objects and the Rapise code editor (described in
section 1.6)

Page 11 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

1.5. Generating REST Test Scripts

Inside the REST request explorer, double-click on the Get_Session function to open up the request:

Click on the Send button to send the sample request. Once that has succeeded, you will see the Record
button appear to the right:

Click that button and the request will get added to the list of recorded steps:

Now open up the Get_Books request and follow the same procedure:

1. Click on the 'Send' button to execute the request
2. Click on the 'Record' button to record the action as a script step

This time we also want to verify the result. You will see a list of books returned in the Verify box
underneath the Body section:

If you select the overall array response[14] and click the main ‘Verify’ button next to the Record button,
the system will automatically add a verification step that verifies all of the values. To try this, click the
Verify button. This will add a bold verification step to the recorded script:

Page 12 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

You will see a script step recorded with a verification test added (it's shown in bold with an asterisk*):

However, in many cases you only want to verify certain properties. For example, we might want to just
verify that 14 books are returned, and that the first book has the right name.

To do this, right-click on the response[14] entry to display the verification content menu:

Choose the option ‘Verify Response length=14’. This adds the following step to the recorded script:

Now we want to verify the name of the first book returned. To do that, expand the “0” index entry and then
right-click on the “Name” property returned:

Choose the option to Verify Repsonse[0].Name = Hound of the Baskervilles. This will add a
verification step for this specific property:

Page 13 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Now we add the last two requests - adding a book and verifying that it was added. To do that open up the
two requests and click Send then Record:

o Add_Book (POST)
o Get_Book (GET)

The Add_Book won't actually work at this point because we've not populated the body, but it will be good
enough to create the test script. For the second instance of Get_Books don't use the Verify option since
we will want to code that by hand to match the book we actually added.

Once you are done, you should have:

Now click on the Create Script option and Rapise will generate the following code for you:

function Test()

{

 var

LibraryInformationSystem_Get_Session=SeS('LibraryInformationSystem_Get_Sessio

n');

 LibraryInformationSystem_Get_Session.SetRequestHeaders([{"Name":"Accept

","Value":"application/json"},{"Name":"Content-

Type","Value":"application/json"}]);

 LibraryInformationSystem_Get_Session.DoExecute();

 var

LibraryInformationSystem_Get_Books=SeS('LibraryInformationSystem_Get_Books');

 LibraryInformationSystem_Get_Books.SetRequestHeaders([{"Name":"Accept",

"Value":"application/json"},{"Name":"Content-

Type","Value":"application/json"}]);

 LibraryInformationSystem_Get_Books.DoExecute();

 Tester.Assert('Compare call result for

http://www.libraryinformationsystem.org/services/restservice.svc/book?session

_id={session_id}', LibraryInformationSystem_Get_Books.GetResponseBodyText(),

"...");

 LibraryInformationSystem_Get_Books.DoVerify('LibraryInformationSystem_G

et_Books Response', "length", 14);

 LibraryInformationSystem_Get_Books.DoVerify('LibraryInformationSystem_G

et_Books Response', "[0].Name", "Hound of the Baskervilles");

 var

LibraryInformationSystem_Add_Book=SeS('LibraryInformationSystem_Add_Book');

Page 14 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

 LibraryInformationSystem_Add_Book.SetRequestHeaders([{"Name":"Accept","

Value":"application/json"},{"Name":"Content-

Type","Value":"application/json"}]);

 LibraryInformationSystem_Add_Book.DoExecute();

 var

LibraryInformationSystem_Add_Book=SeS('LibraryInformationSystem_Add_Book');

 LibraryInformationSystem_Add_Book.SetRequestHeaders([{"Name":"Accept","

Value":"application/json"},{"Name":"Content-

Type","Value":"application/json"}]);

 LibraryInformationSystem_Add_Book.DoExecute();

 LibraryInformationSystem_Get_Books.SetRequestHeaders([{"Name":"Accept",

"Value":"application/json"},{"Name":"Content-

Type","Value":"application/json"}]);

 LibraryInformationSystem_Get_Books.DoExecute();

}

If you click Play on this script as writte, you will see that the tests to retrieve the books work correctly, but
the test of adding a new book fails:

This is as we'd expect since we've not populated the new book yet!

To make the template test script more useful, we should make the following changes:

o Add comments to each of the sections to describe the purpose
o Add code to get the session ID from the first call and pass to the subsequent calls
o Create a JavaScript object to contain the new book information, and pass that to the Add Book

function
o Get the new book ID from the result of the Add Book function and use it later on.
o Remove the check for the entire returned book array and just keep the check for the individual

properties.

The complete updated test script looks like the following. We have highlighted the new/changed lines in
yellow:

 //First get the session

 var

LibraryInformationSystem_Get_Session=SeS('LibraryInformationSystem_Get_Sessio

n');

 LibraryInformationSystem_Get_Session.SetRequestHeaders([{"Name":"Accept

","Value":"application/json"},{"Name":"Content-

Type","Value":"application/json"}]);

 LibraryInformationSystem_Get_Session.DoExecute();

 var sessionId =

LibraryInformationSystem_Get_Session.GetResponseBodyObject();

 Tester.Message('Session ID: ' + sessionId);

Page 15 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

 //Get the list of books

 var

LibraryInformationSystem_Get_Books=SeS('LibraryInformationSystem_Get_Books');

 LibraryInformationSystem_Get_Book.SetRequestHeaders([{"Name":"Accept","

Value":"application/json"},{"Name":"Content-

Type","Value":"application/json"}]);

 LibraryInformationSystem_Get_Books.DoExecute({ "session_id": sessionId

});

 //Verify the data

 LibraryInformationSystem_Get_Books.DoVerify('LibraryInformationSystem_G

et_Books Response', "length", 14);

 LibraryInformationSystem_Get_Books.DoVerify('LibraryInformationSystem_G

et_Books Response', "[0].Name", "Hound of the Baskervilles");

 //Add a book

 var newBook = {

 Name: "A Christmas Carol",

 AuthorId: 2,

 GenreId: 3

 };

 var

LibraryInformationSystem_Add_Book=SeS('LibraryInformationSystem_Add_Book');

 LibraryInformationSystem_Add_Book.SetRequestHeaders([{"Name":"Accept","

Value":"application/json"},{"Name":"Content-

Type","Value":"application/json"}]);

 LibraryInformationSystem_Add_Book.SetRequestBodyObject(newBook)

 LibraryInformationSystem_Add_Book.DoExecute({ "session_id": sessionId

});

 //Get the ID of the new book

 newBook = LibraryInformationSystem_Add_Book.GetResponseBodyObject();

 Tester.Message("New Book ID: " + newBook.Id);

 //Verify the data

 LibraryInformationSystem_Get_Book.SetRequestHeaders([{"Name":"Accept","

Value":"application/json"},{"Name":"Content-

Type","Value":"application/json"}]);

 LibraryInformationSystem_Get_Books.DoExecute({ "session_id": sessionId

});

 LibraryInformationSystem_Get_Books.DoVerify('LibraryInformationSystem_G

et_Books Response', "length", 15);

Page 16 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

1.6. Writing REST Test Scripts

Open up the main MyRestTest1.js file in the Rapise editor. It will initially consist of a single empty
function Test():

The first task is to get a new SessionId from the server using the Get_Session operation. To do this, drag
the "DoExecute" operation from under the "Get_Session" object into the script editor, in between the
opening and closing braces of the Test() function:

This will execute the web serviced and return the SessionId. To actually access the retrieved value, you
need to drag the "GetResponseBodyObject" property to the script editor, under the previous line. Then

add the JavaScript code var sessionId = to actually store the value. We will also add a

Tester.Message(sessionId); line afterwards to write out the value of the sessionId to the test

report. This will help us make sure we are getting back a valid response from the web service. You should
now have the following code:

Save this test and click "Play" to execute the test. You should now see a report similar to the following:

Page 17 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Now we need to add the code to get the list of books. To do that, simply drag the "DoExecute" operation

from under the "Get_Books" object into the script editor. Then change the (null) argument to instead

provide the session id as a Javascript dictionary:

SeS('LibraryInformationSystem_Get_Books').DoExecute({"session_id":sessionI

d});

To get the list of books as a JavaScript array, drag the "GetResponseBodyObject" property to the script
editor, under the previous line. Then assign the value of this property to a variable such as "books":

var books =

SeS('LibraryInformationSystem_Get_Books').GetResponseBodyObject();

Now we can add code to test that the number of books returned matches the expected value. Type in the
following code:

Tester.AssertEqual('Book count matches', 14, books.length);

You should now have the following code:

Finally we need to add the code to add a new book to the system. To do that, simply drag the
"DoExecute" operation from under the "Add_Book" object into the script editor. Then change the

(null) argument to instead provide the session id as a Javascript dictionary:

SeS('LibraryInformationSystem_Add_Book').DoExecute({"session_id":sessionId

});

To provide the data for a new book, we will need to drag the "SetRequestBodyObject" property of the
"Add_Book" object to the line above the DoExecute and pass in a populated JavaScript object:

 var newBook = {};

 newBook.Name = 'A Christmas Carol';

 newBook.AuthorId = 2;

 newBook.GenreId = 3;

SeS('LibraryInformationSystem_Add_Book').SetRequestBodyObject(newBook);

Finally Add code to test that our new book was added correctly and the count has increased by one:

Page 18 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

 SeS('LibraryInformationSystem_Get_Books').DoExecute({"session_id":se

ssionId});

 books =

SeS('LibraryInformationSystem_Get_Books').GetResponseBodyObject();

 Tester.AssertEqual('Book count matches', 15,

books.length);

You should now have the following code:

Save this test and click "Play" to execute the test. You should now see a report similar to the following:

Congratulations! You have just created your first test script that tests a RESTful web service.

Page 19 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

2. Testing SOAP Web Services

In this section you shall learn how to test a SOAP web services API using Rapise. We shall be using a
demo application called Library Information System that has a dummy SOAP web service API available
for learning purposes. You can access this sample application at http://www.libraryinformationsystem.org,
and its SOAP web service API can be found at:

www.libraryinformationsystem.org/Services/SoapService.aspx

2.1. What is SOAP and what is a SOAP web service?

SOAP is the Simple Object Access Protocol, and allows you to make API calls over HTTP/HTTPS using
specially formatted XML. SOAP web servicesmake use of the Web Service Definition Language (WDSL)
and communicate using HTTP POST requests. They are essentially a serialization of RPC object calls
into XML that can then be passed to the web service. The XML passed to the SOAP web services needs
to match the format specified in the WSDL.

SOAP web services are fully self-descripting, so most clients do not directly work with the SOAP XML
language, but instead use a client-side proxy generator that creates client object representations of the
web service (e.g. Java, .NET objects). The web service consumers interact with these language-specific
representations of the SOAP web service. However when these SOAP calls fail you need a way of testing
them that includes being able to inspect the raw SOAP XML that is actually being sent.

2.2. Overview

Creating a SOAP web service test in Rapise consists of the following steps:
1. Using the SOAP web services studio to inspect the SOAP WSDL
2. Invoke the various SOAP operations and verify that they return the expected data in the expected

format.
3. Generating the test script in JavaScript that uses the learned Rapise web service objects based on

the WSDL.

We shall discuss each of these steps in turn.

2.3. Inspecting the SOAP WSDL Endpoint

Create a new test in Rapise called MySoapTest1.sstest.

• For Methodology, choose Basic: Windows Desktop Application and Rapise will create a new

blank test project. If you plan on using a combination of Web or Mobile UI tests in the same script,

you could choose one of the other types.

• For Scripting Language, choose JavaScript. The scriptless Rapise Visual Language (RVL) can

be used with web service tests, but it means that al the web service tests need to be in a

JavaScript subroutine / scenario that is called from the RVL test.

Rapise will create a new blank test project.

Once you have created it, click on the "Web Services" icon in the Test ribbon to add a new web service
definition to your test project:

http://www.libraryinformationsystem.org/Services/SoapService.aspx

Page 20 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

This will display the Add New Web Service dialog box:

Choose SOAP as the type of web service you want to create.

Then, enter the name of the web service that you're going to add, in this case enter
"LibraryInformationSystem.soap" and click "Create".

This will add the SOAP web services definition file to your test project:

In the Endpoint section of the SOAP ribbon, enter the following URL to the sample application's WSDL
file:

o http://www.libraryinformationsystem.org/Services/SoapService.svc?wsdl

then click the Get WSDL to load the list of SOAP operations:

Page 21 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Now click on the Connection_Authenticate operation in the SOAP explorer:

This is the first operation we will need to invoke since it is used to authenticate with the online library
system before calling the other functions.

You can click on each of the different SOAP operations (e.g. for inserting, retrieving, deleting or updating
a book) and the SOAP studio will display the expected input and output parameters as well as any
headers.

In the next section we shall be performing the following actions:

o Authenticating as a specific user
o Viewing the list of books
o Inserting a new book
o Viewing the updated list of books
o Disconnecting

Page 22 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Each one will involve calling a specific SOAP operation with some input parameters, viewing the data
returned and adding a verification step if appropriate.

2.4. Invoking the SOAP Actions

Starting with the Connection_Authenticate operation that we had selected, click on the two Input
parameters in turn and enter values:

o userName = librarian
o password = librarian

Then click the Invoke button underneath:

You can see that the response to our Invoked operation as a simple boolean value of True returned. That
indicated that we authenticated correctly. If you try putting in an incorrect login/password, you'll get back
False instead.

If you have a SOAP web service that doesn't behave as expected, you may want to view the raw SOAP
XML that is being sent to/from the web service. To view this, click on the Request/Response tab of the
SOAP studio editor and the following will be displayed:

Page 23 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

This view lets you see the Request and Response HTTP headers body, with the body displayed in a
friendly, easy to read color-coded XML format. That way you can easily invoke the SOAP operations
using the Rapise SOAP studio GUI and view the raw SOAP XML being sent to/from the server. This is
invaluable when debugging a failing SOAP web service.

In the case of our test of Connection_Authenticate, we can now click the Record button (next to Send)
to add this operation to our list of recorded test steps:

Once you have added the operation to the list of recorded steps, you can go one step further and ask
Rapise to verify the data returned. To do that, click on the Verify button that is displayed next to the
Record button. The step will now switch to bold to indicate that a verification step is also included.

Now we need to repeat this process for the following additional operations:

o Book_Retrieve

▪ No Input Parameters

▪ Press Invoke to test the retrieve

▪ Press Record to record the test script

▪ Click Verify to add a verification step

o Book_Insert

▪ Populate the Book input object with these values:

• AuthorId = 2

• GenreId = 3

• Name = 'A Christmas Carol'

• DateAdded = (pick a date using the date picker)

• DateAddedIso = 2017-01-04T07:46:36

▪ Press Invoke to test the insert

▪ Press Record to record the test script

Page 24 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

o Book_Retrieve

▪ No Input Parameters

▪ Press Invoke to test the retrieve

▪ Press Record to record the test script

▪ Click Verify to add a verification step

o Connection_Disconnect

▪ No Input Parameters

▪ Press Invoke to test the retrieve

▪ Press Record to record the test script

Once you have completed all these steps, you will see the following recorded in the Script Steps box:

Now that we have recorded the operations and verifications, we can proceed to generate the test script in
Rapise that will regression test the web service.

2.5. Generating the Rapise Test Script

In the SOAP ribbon, click on the Create Script button to generate the initial test script:

Click on the Test shortcut in the main test ribbon, and Rapise will display the MySoapTest.js file.

In the main Rapise test script file, you will see the following generated:

function Test()

{

 var LibraryInformationSystem=SeS('LibraryInformationSystem');

 LibraryInformationSystem.DoExecute('Connection_Authenticate',

{"userName":"librarian","password":"librarian"});

 Tester.Assert('Connection_Authenticate Response',

LibraryInformationSystem.GetResponseObject(),

{"Body":{"Connection_AuthenticateResult":true,"Connection_AuthenticateResultS

pecified":true},"Headers":{}});

 LibraryInformationSystem.DoExecute('Book_Retrieve', {});

 Tester.Assert('Book_Retrieve Response',

LibraryInformationSystem.GetResponseObject(), {...}]},"Headers":{}});

 LibraryInformationSystem.DoExecute('Book_Insert',

{"book":{"Author":{"Name":""},"DateAdded":"2017-01-

04T07:46:36","DateAddedSpecified":true,"DateAddedIso":"2017-01-

04T07:46:36","Genre":{"Name":""},"Name":"A Christmas Carol"}});

Page 25 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

 LibraryInformationSystem.DoExecute('Book_Retrieve', {});

 Tester.Assert('Book_Retrieve Response',

LibraryInformationSystem.GetResponseObject(), {...},"Headers":{}});

 LibraryInformationSystem.DoExecute('Connection_Disconnect', {});

}

You will see each of the SOAP functions called in turn, with verification code automatically added.

We can add some comments to make it easier to read:

 //Authenticate

 var LibraryInformationSystem=SeS('LibraryInformationSystem');

 LibraryInformationSystem.DoExecute('Connection_Authenticate',

{"userName":"librarian","password":"librarian"});

 Tester.Assert('Connection_Authenticate Response',

LibraryInformationSystem.GetResponseObject(),

{"Body":{"Connection_AuthenticateResult":true,"Connection_AuthenticateResultS

pecified":true},"Headers":{}});

 //Verify the initial list of books

 LibraryInformationSystem.DoExecute('Book_Retrieve', {});

 Tester.Assert('Book_Retrieve Response',

LibraryInformationSystem.GetResponseObject(), {...}]},"Headers":{}});

 LibraryInformationSystem.DoExecute('Book_Insert',

{"book":{"Author":{"Name":""},"DateAdded":"2017-01-

04T07:46:36","DateAddedSpecified":true,"DateAddedIso":"2017-01-

04T07:46:36","Genre":{"Name":""},"Name":"A Christmas Carol"}});

 //Verify the updated list of books and disconnect

 LibraryInformationSystem.DoExecute('Book_Retrieve', {});

 Tester.Assert('Book_Retrieve Response',

LibraryInformationSystem.GetResponseObject(), {...},"Headers":{}});

 LibraryInformationSystem.DoExecute('Connection_Disconnect', {});

When you click the Play button in the main test ribbon, you will see the following result:

Congratulations! You have recorded and executed a SOAP web service test.

Page 26 of 27 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Legal Notices

This publication is provided as is without warranty of any kind, either express or implied, including, but not

limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

This publication could include technical inaccuracies or typographical errors. Changes are periodically

added to the information contained herein; these changes will be incorporated in new editions of the

publication. Inflectra Corporation may make improvements and/or changes in the product(s) and/or

program(s) and/or service(s) described in this publication at any time.

The sections in this guide that discuss internet web security are provided as suggestions and guidelines.

Internet security is constantly evolving field, and our suggestions are no substitute for an up-to-date

understanding of the vulnerabilities inherent in deploying internet or web applications, and Inflectra cannot

be held liable for any losses due to breaches of security, compromise of data or other cyber-attacks that

may result from following our recommendations.

SpiraTest®, SpiraPlan®, SpiraTeam®, Rapise® and Inflectra® are either trademarks or registered

trademarks of Inflectra Corporation in the United States of America and other countries. Microsoft®,

Windows®, Explorer® and Microsoft Project® are registered trademarks of Microsoft Corporation. All other

trademarks and product names are property of their respective holders.

Please send comments and questions to:

Technical Publications

Inflectra Corporation

8121 Georgia Ave, Suite 504

Silver Spring, MD 20910-4957

U.S.A.

support@inflectra.com

mailto:support@inflectra.com

