Rapise,

Rapise® | Web Service Testing Tutorials

Inflectra Corporation

Date: May 4th, 2017

inflectra”

Contents

INtroduction........ooccveeeiiieee e 1

1. Testing REST Web Services.......... 2
1.1. What is REST and what is a
RESTful web service?..........cccocvenee. 2
1.2. OVEIVIEW ... 2

1.3. Using the REST Query Builder.. 2

1.4. Saving the REST Requests as
(0]][Tox £ SRR 9

1.5. Generating REST Test Scripts 11
1.6. Writing REST Test Scripts........ 16
2. Testing SOAP Web Services 19

2.1. What is SOAP and what is a

SOAP web service?ccccveeeeeeenn. 19
2.2. OVEIVIEW ..ot 19
2.3. Inspecting the SOAP WSDL

ENdpoint........ccooceieiiiiiie e 19

2.4. Invoking the SOAP Actions...... 22
2.5. Generating the Rapise Test

Introduction

Rapise® is a next generation software test
automation tool that leverages the power of
open architecture to improve application quality
and reduce time to market.

This guide provides a quick step-by-step tutorial
for creating a sample Rapise tests that can test
the two main different types of web service —
SOAP and REST.

For further information on using Rapise, please
refer to the more comprehensive Rapise User
Guide. For information on using Rapise in
conjunction with our SpiraTest test management
system, please refer to the Using Rapise with
SpiraTest Guide.

Rapise contains a built-in web service module
that can currently test the following types of web
service:

1. REST Web Services - Rapise contains a
built-in REST definition builder and object
library that allows you to prototype out
your REST web service requests, inspect
the returned HTTP headers and HTTP
response body and then covert into a
parameterized set of Rapise objects that
can be scripted against in the main
Rapise JavaScript editor. It also includes
built-in support for verifying the data
returned as Rapise checkpoints.

2. SOAP Web Services - Rapise contains a
built-in SOAP request tester and object
library that allows you to prototype out
your SOAP web service requests, inspect
the returned HTTP headers and SOAP
response body and then covert into a
parameterized set of Rapise objects that
can be scripted against in the main
Rapise JavaScript editor. It also includes
built-in support for verifying the data
returned as Rapise checkpoints.

1. Testing REST Web Services

In this section you shall learn how to test a RESTful web services API using Rapise. We shall be using a
demo application called Library Information System that has a dummy RESTful web service API
available for learning purposes. You can access this sample application at
http://www.libraryinformationsystem.org, and its RESTful web service API can be found at:
www.libraryinformationsystem.org/Services/RestService.aspx.

1.1. What is REST and what is a RESTful web service?

REpresentational State Transfer (REST) is a style of software architecture for distributed systems such as
the World Wide Web. REST has emerged as a web API design model that offers greater simplicity over
other web service protocols such as SOAP and XML-RPC.

A RESTful web API (also called a RESTful web service) is a web APl implemented using HTTP and
REST principles. Unlike SOAP-based web services, there is no "official” standard for RESTful web APIs.
This is because REST is an architectural style, unlike SOAP, which is a protocol.

1.2. Overview
Creating a REST web service test in Rapise consists of the following steps:

1. Using the REST query builder to create the various REST web service requests and verify that
they return the expected data in the expected format.

2. Parameterizing these REST web service requests into reusable templates and saving as Rapise
learned objects.

3. Generating the test script in Javascript that uses the learned Rapise web service objects.

We shall discuss each of these steps in turn.

1.3. Using the REST Query Builder
Create a new test in Rapise called MyRestTest1.sstest.

e For Methodology, choose Basic: Windows Desktop Application and Rapise will create a new
blank test project. If you plan on using a combination of Web or Mobile Ul tests in the same script,
you could choose one of the other types.

e For Scripting Language, choose JavaScript. The scriptless Rapise Visual Language (RVL) can
be used with web service tests, but it means that al the web service tests need to be in a
JavaScript subroutine / scenario that is called from the RVL test.

Rapise will create a new blank test project.
Once you have created it, click on the "Web Services" icon in the Test ribbon to add a new web service
definition to your test project:

@ Start Page [5] Spira Dashboard

Test ¥y Manual Steps
Functions .G Web Services
Shortcuts

This will display the Add New Web Service dialog box:

http://www.libraryinformationsystem.org/
http://www.libraryinformationsystem.org/Services/RestService.aspx

.5 Add New Web Service X

This wizard will create a new web service definition file inside the current test:

® REST SOAP

LibrarylnformationSystem|rest

C:\Users\adam.sandman|DocumentsiMy Rapise Tests\MyRestTest1

corce

Choose REST as the type of web service you want to create.

Then. enter the name of the web service that you're going to add, in this case enter
"LibraryIlnformationSystem.rest" and click "Create". This will add the REST web services definition file
to your test project:

Auto | Raw XML ISON

Objocts Fiks. Settings
Progerties.

Response Body
Auto| Raw XML JSON

<
FseponseFieadss Oulpul Wamings Enors Find Resuls

You will see on the right hand side, there is a new document editor for the .rest file. This is the REST web
services query form. It lets you send test HTTP requests to the web service under test and inspect the
output being returned.

If you open up API documentation for our sample application
(www.libraryinformationsystem.org/Services/RestService.aspx) you will see that it exposes several
operations for retrieving, adding, updating and deleting books and authors in the system. For this tutorial
we shall perform the following operations:

1. Get the special SessionID to identify our test session

2. Get a list of books in the system

3. Add a new book to the system and verify that it was added
According to the documentation that means we will need to send the following requests:
(i) Get a Unique Session

URL: http://www.libraryinformationsystem.org/Services/RestService.svc/session

Method: GET

Returns: ynique session ID that is passed to other requests to keep data separate for different demo

http://www.libraryinformationsystem.org/Services/RestService.aspx

users

(i) Get this list of books

http://www.libraryinformationsystem.org/Services/RestService.svc/book?session_id={session_

URL: id}

Method: GET

Beturns Array of book objects

(iii) Add a new book to the list

URL: http://www.libraryinformationsystem.org/Services/RestService.svc/book?session_id={session_
T id}

Method: POST

Pass a populated book object:

Body: Name": "Book Name",
"AuthorId": 1,
"GenreId": 1,

Beturns Single book object that has its Bookld populated

The first request will be to get the unique session ID that we will need to pass to the other requests. This
is needed by our sample application to prevent testing by different users interfering with each other. To
create this request, simply enter the following information on the REST Request form:

e Name: Get_Session
e Method: GET
e URL: http://www.libraryinformationsystem.org/Services/RestService.svc/session

You should now have it populated as illustrated below:

& StartPage [Z]MyRestTest1js |[Z] LibraryInformationSystem.re } < Tx
REST Request
R ‘ Get_Session ‘

Method ‘ GET o ‘ ‘ Titpefforww. . | Send ‘

Bady:

©
| [Auto| Raw XML JSON |

This web service request requires that we pass credentials by means of HTTP Basic authentication. So
click on the "REST" tab in the Rapise ribbon and click on the "Add Credentials" button.

Test Options REST
E 0[3 h h '? Create Script

Save Update Add Add Add Remove Step
Requests ObjectTree Header Parameter Credentials Clean

File Edit Script Steps

This will display the "Add Credentials" dialog box:

Add Network Credential ﬂ u

Usemame: librarian -

Password: | =ee=eee

) (o

Enter librarian as both the username and password and click "Add".

Now click the "Send" button and the request will get sent to the web service:

0@ Start Page [2]MyRestTest1 js [@ Librﬂrylnfurmatiu'nSystem.ra;ll

REST Request
Name: ‘Get_SessiDn
Method: ‘ GET v ‘ ‘ http://www._libraryinformationsystem org/services/restservice. svc/session

Credentials: librarian

NO

Response Headers
Name

Status Code 200 0K
Content-Length 113
Cache-Control private
Content-Type applicationfxml; charset=utf-8
Date Mon, 02 Jan 2017 17:38:22 GMT
Set-Cookie ASP.NET_Sessionld=aucc1bizwswrj1diqurgdjmk; path=[; HttpOnly
Server Microsoft-115/3.0
K-AspNet-Version 4.0.30319
X-Powered-By ASP.NET

The Response Header tab will display the headers coming back from the web service. The Status Code
200 OK means that the request succeeded and that data was returned. If you click on the "Response

Body - XML" tab, you will see the XML serialized data returned from the web service:

3 Start Page [B]MyRestTest1js |3 Library i rest |
REST Request
Name: Get_Session
Methad. | GET v | | http:ffwww.libraryinformationsystem.org/services/restservice.svcisession

Credentials: librarian

wr @

Response Body

Raw XML JSON |

1 . <?xml version="1.0" encoding="utf-8"7>
2 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">37£5c5d6-£21e-43bc-9954-052ffb486f7e</string>

Since Rapise uses JavaScript as its scripting language, it is usually easier to work with JSON (JavaScript
Object Notation) serialized data rather than XML. In the case of the sample Library Information System

web service, you can change the format that it accepts and retrieves by sending two special HTTP
headers:

e Content-Type: application/json
e Accept: application/json

To add these headers to the request, simply click on the "Add Header" button in the REST ribbon tab.
This will display the following dialog box:

Add Request Header . — u

i

MName: Accept -

Value: application.json| -

) (e]

Choose the HTTP Header "Accept" from the list and enter "application/json" as the value. Repeat for
the "Content-Type" header. You should now have the following populated request:

@ Start Page [B]MyRestTest1js |3 Li i rest | -
REST Request
ey ‘ Get_Session ‘
Method: Ea « || o e | sena]
Credentials: librarian
Headers: ®
Name Value Operations
Accept ‘npplimnunf]wn @
Content-Type |spplicationfjson ®

Now click the "Send" button and the request will get sent to the web service:

|Response Headers
Name |
Status Code 200 0K
Content-Length 38
Cache-Control private
Content-Type applicationfjson; charset=utf-8
Date Tue. 03 Jan 2017 00:25:48 GMT
Set-Cookie ASP_NET_Sessionld=f1lhsizzrhgbwlaexymzw3qq; path=/: HttpOnly
Server Microsoft-115/8.0
X-AspNet-Version 4.0.30319
X-Powered-By ASP.NET
Response Body | Response Headers | Output Warmings Ermors Find Results

The Response Header tab will display the headers coming back from the web service. Note that the
returned Content-Type is listed as "application/json" as requested. If you click on the "Formatted JSON"
tab, you will see the JSON serialized data returned from the web service:

\ResponseBody

Auto Raw XML .
1 rfda25eﬂ6—119e—4naﬂ—adfd—cf509ce?e4db"

£

JSON

] Response Body

Response Headers Output Wamings Erors Find Results

We have now completed the creation of our first test operation. Click on the "Save Requests" button in

the Rapise REST Ribbon to make sure our changes have been saved.

Now click on the "Clone request” icon in the REST request explorer in the left-hand side of the screen:

REST
e B Ea X .

4 [J] LIS =t
Clone the selected request

- N

4 [J] LibrarylnformationSystem.rest
== Get_Session

This will display the Clone Request dialog box. This lets us create a new REST request that contains the
headers and authentication already defined on our existing request. This will save time over creating a

new REST request from scratch:

Clone Existing Reguest

Please enter the name of the new cloned copy of the request:

X

Mame: Get_Books|

Clone

Cancel

Enter the name "Get_Books" in the dialog box and click the "Clone" button.
request with this name:

This will create a new REST

|

@ Start Page [B]MyRestTest1js |[3 Library

REST Request

Name:

Method:

Credentials:

Headers:

‘ Get_Book

‘ GET

thﬁp/

[]

librarian
@

Name

Accept

Content-Type

Operations
®
®

Value

[applicationfson

applicationfjson

©

For this request, we need to pass through the SessionID in the querystring. Rather than hardcoding it in
the URL, we can make use of the parameterization feature of Rapise. Click on the "Add Parameter"
button in the Rapise REST Ribbon. This will display the "Add Request Parameter" dialog box:

— 2|

Add Request Parameter

Parameters are used in the Request URL to genericize the REST request:

Mame: session_id

Value: 824595bcc-37ed-4cE4-820e-32d798cd 1284

[Ad || Cancel

Enter in the following:
o Name: session_id

Value: 82499bcc-37e4-4c64-820e-a2d798cd1e84
(you can also copy and paste the value returned by the Get_Session command)

Now, click the "Add" button and the parameter will be added to the request.

Next, change the URL to:

http://www.libraryinformationsystem.org/Services/RestService.svc/book?session id=

Then position the caret at the end of this URL and click the "Insert in URL" button. This will insert the
parameter token in the URL at the specified point:

@ Start Page [B]MyRestTest1js |3 Li st | +Ix
REST Request
e ‘GeLBuoH |
Method: ‘ GET " ‘ | hittp:/fwwwe _id={session_id} v | Send |
Credentials: librarian
Headers ®
Name Value Operations
Accept [applicationfson ®
Content-Type |application/json]
Parameters: @
Name Value Operations
{session_id} 82480boc-37e4-4c64-620e-a2d798cd e84 [TnsertinURL)
Body: ®

Now click the "Send" button and the request will get sent to the web service. This will return the list of
books serialized as a JSON array of objects:

G Stort Page [MyRestTest1 js [[3) Lil rest | T
REST Request
e ‘Geljuok
Mzt |eer | o e jon_id-{session_id) < 5o [e |
Credentals: fibrarian (3]
Headers ®
Name Value Operations
Accept ‘appllmhnnﬂsﬂn @
Content-Type |applicationjjson ®
Parameters: @
Name Value Operations
fsession_id} 82499bcc-37e4-4c64-820e-a24798cd TeB4 [Tnsertin URL
=ty ®

Respanse Body

Auto Raw XML [JSON]

1 [{"Ruthor":{"Rge":125,"Id":3, "Name":"Arthur Conan Doyle"},"AuthorId":3,"DateAdded":"\/Date(1421609052000-0500)\/", "DateRddedIso":"2015-01-18T19:24:12", "Gen A

We have now completed the creation of our second test operation. Click on the "Save Requests" button in
the Rapise REST Ribbon to make sure our changes have been saved.

Now click on the "Clone request" icon in the REST request explorer in the right-hand side of the screen.
Enter the name "Add_Book" in the dialog box and click the "Clone" button. This will create a new REST

request with this name:

@ StartPage [B] MyRestTest1 js |3 L e |
REST Request
i ‘Mdjmk ‘
Method ‘ GET “ ‘ ‘ http:fju. lbook _id={session_id} “ | Send ‘
Credentials: librarian
Headers: ®
Name Value Operations
Accept [applicationfison ®
Content-Type application/jsan ®
Parameters: @
Name Value Operations
{session_id) 82499boc-37ed-4c64-620e-a207980d 1664 (TnsetinURL |
By ©

This operation will add a new book to the system, so it's a POST request. Change the Method type in the
dropdown list from "GET" to "POST".
Expand the "Body" field on the form. This is where you can enter in an XML or JSON serialized Book

record that will get added to the system. For now we'll leave this blank and let Rapise serialize the body
for us later on when we actually write our test script. So we should now have:

@ StartPage [B]MyRestTestl js 3 Li i e |
REST Request
‘Addjwk |

Name:

[|

Method ‘ POST v ‘ ‘ it _id={session_id}

Credentials: librarian

Headers: ®
Name Value Operations
Accept applicationfjsan ®
Content-Type |8pplication/json ®
Parameters: @
Name Value Operations
{session_id} 82433boc 37e4-4064- 820 a2d47580d 1634 [TnserinURL
N
[Auto] Raw XML JSON
1 ~

T

We have now completed the creation of our third test operation. Click on the "Save Requests" button in
the Rapise REST Ribbon to make sure our changes have been saved.

1.4. Saving the REST Requests as Objects
Now that we have created our three REST requests, the next step is to actually create the Rapise objects

that we can use in our JavaScript test scripts. Click on the "Update Object Tree" button in the Rapise
REST Ribbon to tell Rapise to update the Object Tree with our new requests:

Test Options REST
H © &= &= %
Save Update Add Add Add
Requests Object Tree Header Parameter Credentials

File Edit

Rapise will open a command prompt window in the background and then display a confirmation message
once the Object Tree has been updated. Click on the "Object" tab of the main Rapise explorer, then right-
click on the Object-Tree root node to bring up the context menu:

Dbject Tree

S id n idH
PRY | Object Tree C\Users\adam.sandman), | a
4 Libn” Refresh

e Collapse all el

- Expand all ot
b -0) et
b e Filter... ot
b -o LibrarylnformationSystem_Inse
b -o LibrarylnformationSystem_lUpd

b -o LibrarylnformationSystem_Upd
4 [Global

» ¥ Android [Android)

b @ Database [Database]

Click on the Refresh icon and you will see the "LibrarylnformationSystem" heading displayed, with the
three saved REST request listed underneath:

Objects

S id | n | idl
4) Object Tree C:\Users\adam.sandman| | a
4 [LibrarylnformationSystem

b -0 Add_Book

b o Get_Book

4 -0 (Get_Session

% DoExecute
% DoVerify

- GetCredential
- GetMethod
- GetParameters
- GetRequestBodyObject
+ GetRequestBody Text
- GetRequestHeaders
- GetResponseBodyObject
+ GetResponseBody Text
- GetResponseHeaders
- GetResponselsEmorStatus
» GetUrl
W SetCredential -

4 »
Objects | Files REST Settings

If you expand one of the REST requests (e.g. Add_Book), you'll see that it has a single operation
"DoExecute" that executes the web services and a series of properties available for inspecting or
updating any part of the REST request prior to it being sent to the server.

In the next section we shall illustrate how you can write a test script using these learned objects:

a) You can either have Rapise generate test scripts and verification points automatically (described in
section 1.5), or

LR S G Y U R R U R R

b) You can manually write the test scripts using the objects and the Rapise code editor (described in
section 1.6)

1.5. Generating REST Test Scripts
Inside the REST request explorer, double-click on the Get_Session function to open up the request:

REST Request
e |Get,3mmn ‘

Method: |GF_T v||mp; . v| €21 ‘

Credentials: librarian

Headers: ®
Neme Value Operations
Accept ‘appllmunnfjsﬂn @
Content-Type |applicationfjson 5]

Click on the Send button to send the sample request. Once that has succeeded, you will see the Record
button appear to the right:

REST Request
(e ‘GeLSE&smn ‘

Method ‘GET tht\p/[www Jsession v| Send | Record ‘
Credentiols: rarien (53]
Headers: [©)
Name Value Operations
Aceept \ applicationfjson @
Content-Type [spplicationfison ®

Click that button and the request will get added to the list of recorded steps:

Get_Session GET Create Script

Remove Step

Clean

Script Steps

Now open up the Get_Books request and follow the same procedure:
1. Click on the 'Send' button to execute the request
2. Click on the 'Record' button to record the action as a script step

This time we also want to verify the result. You will see a list of books returned in the Verify box
underneath the Body section:

‘GeLBmks |

‘GET v”httpffwww /book?session_id=; id} v| Send | Record | Verify |
librarian
4 responsel14] B
0
4 Author
Age=125

Id=3
Name=Arthur Conan Doyle
Authorld=3
DateAdded=1/18/2015 2:24:12 PM
DateAddediso=1/18/2015 7-24:12 PM
b Genre
Genreld=2

If you select the overall array response[14] and click the main ‘Verify’ button next to the Record button,
the system will automatically add a verification step that verifies all of the values. To try this, click the
Verify button. This will add a bold verification step to the recorded script:

Get_Session GET
*Get_Books GET

You will see a script step recorded with a verification test added (it's shown in bold with an asterisk*):

However, in many cases you only want to verify certain properties. For example, we might want to just
verify that 14 books are returned, and that the first book has the right name.

To do this, right-click on the response[14] entry to display the verification content menu:

4 response[14]

40 Read Response
b Aul Verify Response=[{ "Author":{ "Age™ 125 "Id" 3,
Aut Read Response length
$1 Verify Response length=14

Choose the option ‘Verify Response length=14’. This adds the following step to the recorded script:

Get_Session GET
4 *Get_Books GET
Verify Response length=14

Now we want to verify the name of the first book returned. To do that, expand the “0” index entry and then
right-click on the “Name” property returned:

4 response[14]
4 0
b Author
Authorld=3
DateAdded=1/18/20152:24.12 PM
DateAddedlso=1/18/2015 7:24:12 PM
b Genre
Genreld=2
Id=1
IsOutOfPrint=False
MName=Hound of the Baskenvilles
b1 Eead Response[0].Name

Verify Response[0].Name=Hound of the Baskervilles

Choose the option to Verify Repsonse[0].Name = Hound of the Baskervilles. This will add a
verification step for this specific property:

4 *Get_Books GET -
Verify Response length=14
Verify Response[0].Name=Houn

Now we add the last two requests - adding a book and verifying that it was added. To do that open up the
two requests and click Send then Record:

o Add_Book (POST)
o Get_Book (GET)

The Add_Book won't actually work at this point because we've not populated the body, but it will be good
enough to create the test script. For the second instance of Get_Books don't use the Verify option since
we will want to code that by hand to match the book we actually added.

Once you are done, you should have:

b *Get_Books GET |« | Create Script
Add_Book POST [] Remove Step

Get Books GET [+ | Clean

Script Steps

Now click on the Create Script option and Rapise will generate the following code for you:

function Test ()
{

var
LibraryInformationSystem Get Session=SeS('LibraryInformationSystem Get Sessio
n');

LibraryInformationSystem Get Session.SetRequestHeaders ([{"Name":"Accept
", "Value":"application/json"}, {"Name":"Content-
Type","Value":"application/json"}]);

LibraryInformationSystem Get Session.DoExecute();

var
LibraryInformationSystem Get Books=SeS('LibraryInformationSystem Get Books'");
LibraryInformationSystem Get Books.SetRequestHeaders ([{"Name":"Accept",
"Value":"application/json"}, {"Name":"Content-
Type'","Value":"application/json"}]);
LibraryInformationSystem Get Books.DoExecute () ;

Tester.Assert ('Compare call result for
http://www.libraryinformationsystem.org/services/restservice.svc/book?session
_id={session id}', LibraryInformationSystem Get Books.GetResponseBodyText (),

H...H);

LibraryInformationSystem Get Books.DoVerify('LibraryInformationSystem G
et Books Response', "length", 14);

LibraryInformationSystem Get Books.DoVerify('LibraryInformationSystem G
et Books Response', "[0].Name", "Hound of the Baskervilles");

var
LibraryInformationSystem Add Book=SeS('LibraryInformationSystem Add Book'");

LibraryInformationSystem Add Book.SetRequestHeaders ([{"Name":"Accept","
Value":"application/Jjson"}, {"Name":"Content-
Type","Value":"application/json"}]);

LibraryInformationSystem Add Book.DoExecute();

var
LibraryInformationSystem Add Book=SeS('LibraryInformationSystem Add Book'");
LibraryInformationSystem Add Book.SetRequestHeaders ([{"Name":"Accept","
Value":"application/Jjson"}, {"Name":"Content-
Type","Value":"application/json"}]);
LibraryInformationSystem Add Book.DoExecute();

LibraryInformationSystem Get Books.SetRequestHeaders ([{"Name":"Accept",
"Value":"application/json"}, {"Name":"Content-
Type","Value":"application/json"}]);

LibraryInformationSystem Get Books.DoExecute () ;

}

If you click Play on this script as writte, you will see that the tests to retrieve the books work correctly, but
the test of adding a new book fails:

8 Stort Page [B]MyRestTestljs [LibrarylnformationSystem.rest @) MyRestTest1_2017-01-03_1752tr - Tx

Drag a column header here to group by that column.
Type Start - Name Status Comment Iteration

w w - a| o 5| -

- Message 17:52:55.623 Starting scenario: Test Info
Assert 17:52:56.511 Get_Session.DoExecute([]) Pass Returned Value: true
Assert 17:52:56.978 Get_Book.DoExecute([]) Pass Returned Value: true
Assert 17:52:56.985 Compare call result for http://www.libraryinformationsystem.org/servi Pass [{"Author":{"Age":125,"Id":3,"Name": "Arthur Conan
Assert 17:52:57.210 Add_Book.DoExecute([]) Fail Returned Value: false
Assert 17:52:57.793 Get_Book.DoExecute([]) Pass Returned Value: true

Hor Test 17:52:57.798 MyRestTest1 Fail Passed:4 Failed:1

-~ Test Fail
@ Total: 7 Pass:4 Fail:2 Info:1

© o o o o

This is as we'd expect since we've not populated the new book yet!

To make the template test script more useful, we should make the following changes:

o Add comments to each of the sections to describe the purpose

o Add code to get the session ID from the first call and pass to the subsequent calls

o Create a JavaScript object to contain the new book information, and pass that to the Add Book
function

o Get the new book ID from the result of the Add Book function and use it later on.

o Remove the check for the entire returned book array and just keep the check for the individual
properties.

The complete updated test script looks like the following. We have highlighted the new/changed lines in
yellow:

//First get the session

var
LibraryInformationSystem Get Session=SeS('LibraryInformationSystem Get Sessio
n');

LibraryInformationSystem Get Session.SetRequestHeaders ([{"Name":"Accept
","Value":"application/json"}, {"Name":"Content-
Type","Value":"application/json"}]);

LibraryInformationSystem Get Session.DoExecute();

var sessionId =
LibraryInformationSystem Get Session.GetResponseBodyObject () ;

Tester.Message ('Session ID: ' + sessionId);

LibraryInformationSystem Get Books=SeS('LibraryInformationSystem Get Books');

Value":"application/json"}, {"Name":"Content-
Type","Value":"application/json"}]);

et Books Response', "length", 14);

et Books Response', "[0].Name", "Hound of the Baskervilles");

LibraryInformationSystem Add Book=SeS('LibraryInformationSystem Add Book'");

Value":"application/json"},{"Ngme":"Content—
Type","Value":"application/json"}1);

Value":"application/json"}, {"Name":"Content-
Type'","Value":"application/json"}]);

//Get the list of books
var

LibraryInformationSystem Get Book.SetRequestHeaders ([{"Name":"Accept","
LibraryInformationSystem Get Books.DoExecute({ "session id": sessionId

//Verify the data
LibraryInformationSystem Get Books.DoVerify('LibraryInformationSystem G

LibraryInformationSystem Get Books.DoVerify('LibraryInformationSystem G

//Add a book

var newBook = {
Name: "A Christmas Carol",
AuthorId: 2,
GenreId: 3

}i

var
LibraryInformationSystem Add Book.SetRequestHeaders ([{"Name":"Accept","

LibraryInformationSystem Add Book.SetRequestBodyObject (newBook)
LibraryInformationSystem Add Book.DoExecute({ "session id": sessionId

//Get the ID of the new book
newBook = LibraryInformationSystem Add Book.GetResponseBodyObject () ;
Tester.Message ("New Book ID: " + newBook.Id);

//Verify the data
LibraryInformationSystem Get Book.SetRequestHeaders ([{"Name":"Accept","

LibraryInformationSystem Get Books.DoExecute ({ "session id": sessionId

LibraryInformationSystem Get Books.DoVerify('LibraryInformationSystem G
et Books Response', "length", 15);

1.6. Writing REST Test Scripts

Open up the main MyRestTest1.js file in the Rapise editor. It will initially consist of a single empty
function Test():

8 Start Page | x| .5)Spira Dashboard | x| |[E]WebServicesREST j ?} [LibrarylnformationSystern.rest | x|

[/ #¥44#4444E Script Steps ###FEEEEE4EEES

function Test()
}

g load libraries=["Web Service"]:

e I L O Y R O T o R

]

[l e e e N+ s
[o B S

The first task is to get a new Sessionld from the server using the Get_Session operation. To do this, drag
the "DoExecute" operation from under the "Get_Session" object into the script editor, in between the
opening and closing braces of the Test() function:

G Start Page | x| .S Spira Dashboard [x|

[E]WebServicesREST js ?l [LibrarylnformationSystem.rest” | x|

[/ #EEEEEEEEE Script Steps #E#HEEEEEEEEEE

function Test()

=] O N = W M =

{
T Se5('LibraryInformationSystem Get Session').DoExecute (null);
}

g load libraries=["Web Service"];

]

| el e Y ® s
[T S R e B

This will execute the web serviced and return the Sessionld. To actually access the retrieved value, you
need to drag the "GetResponseBodyObject" property to the script editor, under the previous line. Then
add the JavaScript code var sessionId = to actually store the value. We will also add a
Tester.Message (sessionId) ; line afterwards to write out the value of the sessionld to the test
report. This will help us make sure we are getting back a valid response from the web service. You should
now have the following code:

function Te=st ()

{
Se5('LibraryInformationSystem Get Session') .DoExecute (null);
wvar sessionld = 5e5(" L"_]:::'a:"-_,-'::fc\:rr.atLD:S'-_;sterr._Get_SessLD: ") .GetResponseBodyCbject () -
Tester.Message (ses=sionld)

}

g_load libraries=["Web Service"];

Save this test and click "Play" to execute the test. You should now see a report similar to the following:

B MyRestTest1js B LibraryinformationSystem.rest W% Start Page [& BRANEAL T M ER BLRER A

Name Start E Type Status Comment Iteration
-3 & & -| i | | -
Starting scenario: Test 13:37:16.020 Message Info
Get_Session.DoExecute([null]) 13:37:17.486 Assert Pass Returned Value: true 0
d51f97ea-d8759-4ebl-b585-55469b88ce7 13:37:17.486 Message Info 0
MyRestTestl 13:37:17.486 Test Pass Passed:1 Failed:0

i~ TestPass
@ Total:4 Pass:2 Fail:0 Info:2

Now we need to add the code to get the list of books. To do that, simply drag the "DoExecute" operation
from under the "Get_Books" object into the script editor. Then change the (null) argument to instead
provide the session id as a Javascript dictionary:

SeS ('LibraryInformationSystem Get Books') .DoExecute({"session id":sessionI
d});

To get the list of books as a JavaScript array, drag the "GetResponseBodyObject" property to the script
editor, under the previous line. Then assign the value of this property to a variable such as "books":

var books =
SeS ('LibraryInformationSystem Get Books') .GetResponseBodyObject () ;

Now we can add code to test that the number of books returned matches the expected value. Type in the
following code:

Tester.AssertEqual ('Book count matches', 14, books.length);
You should now have the following code:

function Test()

F{

Se5('LibraryInformationSystem Get_ Session') .DoExecute (null);

var sessionld = 5e5('LibraryInformationSystem Get Session') .GetResponseBodyObject():
Tester.Message (ses=sionld) ;

Se5('LibraryInformationSystem Get Books').DoExecute ({"session_id":sessionld}):

wvar books = 5e5('LibraryInformationSystem Get Books') .GetResponseBodyCbject():

Tester.AssertEqgual ('Book count matches', 14, books.length):
-}

g load libraries=["Web Service"];

Finally we need to add the code to add a new book to the system. To do that, simply drag the
"DoExecute" operation from under the "Add_Book" object into the script editor. Then change the
(null) argument to instead provide the session id as a Javascript dictionary:

SeS ('LibraryInformationSystem Add Book') .DoExecute ({"session id":sessionId
1) ;
To provide the data for a new book, we will need to drag the "SetRequestBodyObject" property of the
"Add_Book" object to the line above the DoExecute and pass in a populated JavaScript object:

var newBook = {};

newBook.Name = 'A Christmas Carol';
newBook.AuthorId = 2;
newBook.GenrelId = 3;

SeS ('LibraryInformationSystem Add Book') .SetRequestBodyObject (newBook) ;

Finally Add code to test that our new book was added correctly and the count has increased by one:

SeS('LibraryInformationSystem Get Books').DoExecute ({"session id":se
ssionId}) ;
books =
SeS ('LibraryInformationSystem Get Books') .GetResponseBodyObject () ;
Tester.AssertEqual ('Book count matches', 15,
books.length) ;

You should now have the following code:

function Test ()

Hl
Se5("LibraryInformationSystem Get_ Session') .DoExecute (null):
var sessionld = Se5('LibraryInformationSystem Get Session') .GetResponszeBodyObject ():
Tester.Mess=sage (ses=sionld);
Se5("LibraryInformationSystem Get Books') .DoExecute ({"session_id":sessionld}):;
var books = S5e5('LibraryInformationSystem Get Books') .GetResponszeBodyObject ()
Tester.AssertEqual ("Eook count matches', 14, books.length);
wvar newbook = {};
newBook.Name = "A Christmas Carcl';
newBook.RuthorId = 2;
newBook.Genreld = 3;
Se5("'LibraryInformationSystem Add Book') .S5etRequestBodyCbject (newBook):
Se5 ('LibraryInformationSystem Add Book') .DoExecute ({"session_id":szessionld});
Se5("LibraryInformationSystem Get Books') .DoExecute ({"session_id":sessionld}):
books = Se5('LibraryInformationSystem Get Books') .GetResponseBodyObject():
Tester.AssertEqual ("BEook count matches'", 15, books.length);

-}

Save this test and click "Play" to execute the test. You should now see a report similar to the following:

E;i MyRestTestl,js E LibraryInformationSystem.rest ™% Start Page m MyRestTestl_2013-06-19_14-4%.trp

Name Start z Type Status Comment Iteration
- H E| E| =| m E| E| =
Starting scenario: Test 14:49:03.725 Message Info
Get_Session.DoExecute([null]) 14:49:04.334 Assert Pass Returned Value: true 0
c3d8dcd4-6125-427d-839a-0dd181b3ccel 14:49:04.334 Message Info 0
Get_Books.DoExecute([{"session_id™:"c3d8dcd4-61254 | 14:458:05.051 Assert Pass Returned Value: true 0
Book count matches 14:49:05.051 Assert Pass 0
Add_Book.DoExecute([{"session_id":"c3d8dcd4-6125-4 | 14:49:05.379 Assert Pass Returned Value: true 1]
Get_Books.DoExecute([{"session_id™:"c3d8dcd4-6125-4 | 14:458:05.557 Assert Pass Returned Value: true 0
Book count matches 14:49:05.597 Assert Pass 0
| p MyRestTestl 14:49:05.597 Test Pass Passed:6 Failed:0
.~ TestPass
@ Total:9 Pass:7 Fail:0 Info:2

Congratulations! You have just created your first test script that tests a RESTful web service.

2. Testing SOAP Web Services

In this section you shall learn how to test a SOAP web services API using Rapise. We shall be using a
demo application called Library Information System that has a dummy SOAP web service API available
for learning purposes. You can access this sample application at http://www.libraryinformationsystem.org,
and its SOAP web service API can be found at:

www.libraryinformationsystem.org/Services/SoapService.aspx

2.1. What is SOAP and what is a SOAP web service?

SOAP is the Simple Object Access Protocol, and allows you to make API calls over HTTP/HTTPS using
specially formatted XML. SOAP web servicesmake use of the Web Service Definition Language (WDSL)
and communicate using HTTP POST requests. They are essentially a serialization of RPC object calls
into XML that can then be passed to the web service. The XML passed to the SOAP web services needs
to match the format specified in the WSDL.

SOAP web services are fully self-descripting, so most clients do not directly work with the SOAP XML
language, but instead use a client-side proxy generator that creates client object representations of the
web service (e.g. Java, .NET objects). The web service consumers interact with these language-specific
representations of the SOAP web service. However when these SOAP calls fail you need a way of testing
them that includes being able to inspect the raw SOAP XML that is actually being sent.

2.2. Overview

Creating a SOAP web service test in Rapise consists of the following steps:
1. Using the SOAP web services studio to inspect the SOAP WSDL
2. Invoke the various SOAP operations and verify that they return the expected data in the expected
format.
3. Generating the test script in JavaScript that uses the learned Rapise web service objects based on
the WSDL.

We shall discuss each of these steps in turn.

2.3. Inspecting the SOAP WSDL Endpoint

Create a new test in Rapise called MySoapTestl.sstest.
e For Methodology, choose Basic: Windows Desktop Application and Rapise will create a new
blank test project. If you plan on using a combination of Web or Mobile Ul tests in the same script,
you could choose one of the other types.

e For Scripting Language, choose JavaScript. The scriptless Rapise Visual Language (RVL) can
be used with web service tests, but it means that al the web service tests need to be in a
JavaScript subroutine / scenario that is called from the RVL test.

Rapise will create a new blank test project.

Once you have created it, click on the "Web Services" icon in the Test ribbon to add a new web service
definition to your test project:

@ Start Page [5] Spira Dashboard

Test ¥y Manual Steps

Functions .G Web Services
Shortcuts

http://www.libraryinformationsystem.org/Services/SoapService.aspx

This will display the Add New Web Service dialog box:

|4 Add New Web Service

This wizard will create a new web service definition file inside the current test:
(JREST @ SOAP

LibrarylnformationSystem|soap

C:\Users\adam.sandman\DocumentsiMy Rapise Tests\MySoapTest1

Create | |

Cancel |

Choose SOAP as the type of web service you want to create.

Then, enter the name of the web service that you're going to add, in this case enter
"LibrarylnformationSystem.soap" and click "Create".

This will add the SOAP web services definition file to your test project:

ﬁ Test Options
L hitp:/fwerw libraryinformationsystem.org/Services | Get WSDL 3 Create Script
Save | Custom Endpoint 4 Remove Step Add
K Clean Credentials
File Endpoint Script Steps HTTP
SoAP @ Stan Pege [B] MySoapTest] js e LibrarylnformationSystem.son
>l LibraryInformationSystem [invoke | RequestResponss
Input Valus
Output Valee | Invoke
Objects Files | S0AP | Settings
Propedies
S
FResponse Bady
Auto Raw XML | JSON |
var LibraryInformationSystem_Get_Session=SeS5('LibraryInformationSystem
LibraryInformationSystem Get_Session.SetReguestHeaders ([{"Name":"Acc
LibraryInformationSystem Get_Session.DoExscute();
var LibraryInformationsystem Get_Book=Ses('LibraryInformatiol 14
LibraryInformationSystem Get_Book.SetReguestHeaders([{" application/jg
LibraryInformationsystem Get Book.DoExecute ();
<
Re Fody | Response Headers Output Wamings Emors Find Results

In the Endpoint section of the SOAP ribbon, enter the following URL to the sample application's WSDL

file:

o http://www.libraryinformationsystem.org/Services/SoapService.svc?wsdl

then click the Get WSDL to load the list of SOAP operations:

'SOAP
4 .4 LibraryInformationSystem]
4 =0 BasicHttpBinding_lSoapService
‘@ Author_Retrieve
& Author_RetrieveByld
% Book_Delete
% Book_Insert
‘% Book_Retrieve
- Book_RetrieveByDateRange
- Book_RetrieveByld
@ Book_Update
@ Book_Uploadimage
% Connection_Authenticate
% Connection_Disconnect
¢ -2 BasicHttpBinding_lSoapServicel

Objects Files | SOAP [Settings

Now click on the Connection_Authenticate operation in the SOAP explorer:

ot & Start Page MySoapTest] js [M LibraryInformationS)
4 .2 LibraryInformationSystem
4 —o BasicHttpBinding_|SoapService

IInvoI{e | Request/Response

=% Author_Retrieve Input

@ Author_RetrieveByld 4 @+ Connection_Authenticate
=% Book_Delete {} Headers

=% Book_lnsert 4 0 Body

2@ Book_Retrieve
=@ Book_RetrieveByDateRange
=% Book_RetrieveByld
=% Book_Update
=% Book_Uploadimage
=% Connection_Authenticate
=% Connection_Disconnect
b -0 BasicHttpBinding_|SoapServicel

String userName =
String password =

This is the first operation we will need to invoke since it is used to authenticate with the online library
system before calling the other functions.

You can click on each of the different SOAP operations (e.g. for inserting, retrieving, deleting or updating
a book) and the SOAP studio will display the expected input and output parameters as well as any
headers.

In the next section we shall be performing the following actions:

o Authenticating as a specific user
o Viewing the list of books

o Inserting a new book

o Viewing the updated list of books
o Disconnecting

Each one will involve calling a specific SOAP operation with some input parameters, viewing the data
returned and adding a verification step if appropriate.

2.4. Invoking the SOAP Actions

Starting with the Connection_Authenticate operation that we had selected, click on the two Input
parameters in turn and enter values:

o userName = librarian

o password = librarian

Then click the Invoke button underneath:

& Start Page MySoapTestl.js [m Libraryl nfc i soa 1
IInvoke ‘ Request/Response |

Input Value
4 ¢+ {h Connection_Authenticate Value librarian
{} Headers IsNull False
4 {} Body Type System.Siring

String userName = librarian
String password = librarian

@ {0y Connection_Authenticate Value True
{} Headers Type System Boolean
4 {} Body
Boolean Connection_AuthenticateResult = True
Boolean Connection_AuthenticateResultSpecifi

You can see that the response to our Invoked operation as a simple boolean value of True returned. That
indicated that we authenticated correctly. If you try putting in an incorrect login/password, you'll get back
False instead.

If you have a SOAP web service that doesn't behave as expected, you may want to view the raw SOAP
XML that is being sent to/from the web service. To view this, click on the Request/Response tab of the
SOAP studio editor and the following will be displayed:

G Start Page [B] MySospTest] s | me LibraryInformationSystem son - Tx|
invoke | [RaquesiResponse

RequestPrope

AllowAutoRedire False
AlowWiiteStrear False
BasicAuthPassw

BasicAuthUserN

ContentType textxnl; charset-uti-8

#1.0" encoding="utf-8"> ~

xmlns :soap="http://schemas. xmlsoap.org/soap/envelope/" xmlns:xsi="http://wwd.u3.org/2001/XMLSchena-instance®

n_puthenticate xmlns="http://waw.inflectra.com/LibraryInfornationsystem/services/">

KeepAlve False e>1ibrarian</usernane>
;‘::dm ::S: <password>librarian</password>
ipein JConnection Authentic
Erduthenticata False </Connection_authenticate> -
SendChunked False < >
SOAPACton "htp:fwnw inflectra.c
Timeout 100000 Respanse Send
il hi i
et e RespanseCode: 200 (OK)
I Faioa Content-Length: 296
Cache-Contral. private
Content-Type:text/xml; charset=utf-3
Date:Wed, 04 Jan 2017 03:57.52 GMT
Set-Cookie:ASP.NET_Sessionld=utsngxkeqyimrbuZrvafohlf. path=/: HttpOnly
Server-Microsoft-IIs/8.0
X-AspNet-Version 4.0.30319
X-Powered-By-ASP.NET
<s:Envelope xmins:s="http:/ /schemas.xmlsoap.org/soap/envelope "> <s:Body> <Connection_AuthenticateResponse xmins="http:/ /www.inflectra.com/LibrarylnformationSyste
< >
FResponse Body
Auto Raw XML | 150N
<?xml version="1.0" encoding="utf-g"2> ~
—i<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
- <s:Body>

<Connection_AuthenticateResponse xmlns="http://www.inflectra.com/LibraryInformationSystem/Services/">
<Connection_AuthenticateResult>true</Connection AuthenticateResult>
</Connection RuthenticateResponse> -
</s:Body> -

Dody | ResponseHeoders Output Womings Erors Find Resufts

This view lets you see the Request and Response HTTP headers body, with the body displayed in a
friendly, easy to read color-coded XML format. That way you can easily invoke the SOAP operations
using the Rapise SOAP studio GUI and view the raw SOAP XML being sent to/from the server. This is
invaluable when debugging a failing SOAP web service.

In the case of our test of Connection_Authenticate, we can now click the Record button (next to Send)
to add this operation to our list of recorded test steps:

Connection_Authenticate {"userName";"librarian”,"password":"librarian"} #3 Create Script
Remove Step
Clean

Script Steps

Once you have added the operation to the list of recorded steps, you can go one step further and ask
Rapise to verify the data returned. To do that, click on the Verify button that is displayed next to the
Record button. The step will now switch to bold to indicate that a verification step is also included.

Connection_Authenticate {"userName”:"librarian”,”password”:"librarian”} #3 Create Script
Remove Step
* Clean

Script Steps

Now we need to repeat this process for the following additional operations:
o Book_Retrieve
= No Input Parameters
= Press Invoke to test the retrieve
= Press Record to record the test script
= Click Verify to add a verification step
o Book_Insert
» Populate the Book input object with these values:
e Authorld =2
e Genreld=3
¢ Name ="'A Christmas Carol'
o DateAdded = (pick a date using the date picker)
e DateAddedlso =2017-01-04T07:46:36
» Press Invoke to test the insert
= Press Record to record the test script

Input Value

@ DoteTme DoteAdded = 170001 120 [~ | (17 e rvictnas Carol |
Boolean DateAddedSpecified = False IsNull False

String DateAddedlso = Type System String

“i§ Genre Genre

Int32 Genreld = 3

Boolean GenreldSpecified = False
Int321d=0

Boolean ldSpecified = False

Boolean IsOutOfPrint = False
Boolean IsOutOfPrintSpecified = Fals
String Name = A Christmas Carol

Output Value

o Book_Retrieve

= No Input Parameters

» Press Invoke to test the retrieve

= Press Record to record the test script

» Click Verify to add a verification step
o Connection_Disconnect

= No Input Parameters

= Press Invoke to test the retrieve

» Press Record to record the test script

Once you have completed all these steps, you will see the following recorded in the Script Steps box:

Book_Insert {"book™{"Author”{"Name":""},"DateAdded";"2017-01-04T07:46:36"," ~ |#9 Create Script
Book _Retrieve {} # Remove Step
Connection_Disconnect {} + | % Clean

Script Steps

Now that we have recorded the operations and verifications, we can proceed to generate the test script in
Rapise that will regression test the web service.

2.5. Generating the Rapise Test Script

In the SOAP ribbon, click on the Create Script button to generate the initial test script:

Book_Insert {"book™:{"Author”{"Name",""},"DateAdded";"2017-01-04T07:46:36"," ~ |#9 Create Script
Book_Retrieve {} # Remove Step
Connection_Disconnect {} + | Clean

Script Steps

Click on the Test shortcut in the main test ribbon, and Rapise will display the MySoapTest.js file.
In the main Rapise test script file, you will see the following generated:

function Test ()
{
var LibraryInformationSystem=SeS('LibraryInformationSystem');
LibraryInformationSystem.DoExecute ('Connection Authenticate',
{"userName":"librarian", "password":"librarian"});
Tester.Assert ('Connection Authenticate Response',
LibraryInformationSystem.GetResponseObject (),
{"Body":{"Connection AuthenticateResult":true, "Connection AuthenticateResults
pecified":true}, "Headers":{}});
LibraryInformationSystem.DoExecute ('Book Retrieve', {});
Tester.Assert ('Book Retrieve Response',
LibraryInformationSystem.GetResponseObject (), {...}]},"Headers":{}});
LibraryInformationSystem.DoExecute ('Book Insert',
{"book": {"Author": {"Name":""}, "DateAdded" :"2017-01-
04T07:46:36", "DateAddedSpecified":true, "DateAddedIso":"2017-01-
04T07:46:36","Genre": {"Name":""}, "Name" :"A Christmas Carol"}});

{"userName":

//Authenticate
var LibraryInformationSystem=SeS('LibraryInformationSystem') ;
LibraryInformationSystem.DoExecute ('Connection Authenticate',
"librarian", "password":"librarian"});
Tester.Assert ('Connection Authenticate Response',
LibraryInformationSystem.GetResponseObject (),
{"Body":{"Connection AuthenticateResult":true, "Connection AuthenticateResults
pecified":true}, "Headers":{}});

We can add some comments to make it easier to read:

//Verify the initial list of books
LibraryInformationSystem.DoExecute ('Book Retrieve', {});
Tester.Assert ('Book Retrieve Response',
LibraryInformationSystem.GetResponseObject (), {.
LibraryInformationSystem.DoExecute ('Book Insert',
{"book": {"Author": {"Name":""}, "DateAdded" :"2017-01-
04T07:46:36", "DateAddedSpecified":true, "DateAddedIso":
04T07:46:36","Genre": {"Name":""}, "Name":"A Christmas Carol"}});

LibraryInformationSystem.DoExecute ('Book Retrieve', {});
Tester.Assert ('Book Retrieve Response',
LibraryInformationSystem.GetResponseObject (),
LibraryInformationSystem.DoExecute ('Connection Disconnect', {});

"2017-01-

//Verify the updated list of books and disconnect
LibraryInformationSystem.DoExecute ('Book Retrieve', {});
Tester.Assert ('Book Retrieve Response',
LibraryInformationSystem.GetResponseObject (),
LibraryInformationSystem.DoExecute ('Connection Disconnect', {});

{...},"Headers":{}});

You will see each of the SOAP functions called in turn, with verification code automatically added.

..}1},"Headers":{}});

{...},"Headers":{}});

When you click the Play button in the main test ribbon, you will see the following result:

Type
| * m‘ @‘
Message
Assert
Assert
Assert
Assert
Assert
Assert
Assert
Assert
> Test

Start
08‘:46:21.701
08:46:22.539
08:46:22.546
08:46:22.918
08:46:22.926
08:46:23.135
08:46:23.353
08:46:23.358
08:46:23.556
08:46:23.561

I Start Page [B] MySoapTestijs v Librarylnfol play (Ctrl+F5) Mﬁl MySoapTest1_2017-0104_0846.tr |

Drag a column header here to group by that column.

Name
5|
Starting scenario: Test
LibraryInformationSystem.DoExecute(["Connection_Authenticate”,{"us
Connection_Authenticate Response
LibraryInformationSystem.DoExecute(["Book_Retrieve" {}])
Book_Retrieve Response
LibraryInformationSystem.DoExecute(["Book_Insert",{"book":{"Author
LibraryInformationSystem.DoExecute(["Book_Retrieve" {}])
Book_Retrieve Response
LibraryInformationSystem.DoExecute(["Connection_Disconnect”,{}1)
MySoapTest1

_~ Test Pass
Total-10 Pass:9 Fail:0 Info:1

Status

al
Info
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass

Bl

Returned Value: true

Returned Value: true

Returned Value: true
Returned Value: true

Returned Value: true
Passed:8 Failed:0

Comment

Congratulations! You have recorded and executed a SOAP web service test.

Legal Notices

This publication is provided as is without warranty of any kind, either express or implied, including, but not
limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
added to the information contained herein; these changes will be incorporated in new editions of the
publication. Inflectra Corporation may make improvements and/or changes in the product(s) and/or
program(s) and/or service(s) described in this publication at any time.

The sections in this guide that discuss internet web security are provided as suggestions and guidelines.
Internet security is constantly evolving field, and our suggestions are no substitute for an up-to-date
understanding of the vulnerabilities inherent in deploying internet or web applications, and Inflectra cannot
be held liable for any losses due to breaches of security, compromise of data or other cyber-attacks that
may result from following our recommendations.

SpiraTest®, SpiraPlan®, SpiraTeam®, Rapise® and Inflectra® are either trademarks or registered
trademarks of Inflectra Corporation in the United States of America and other countries. Microsoft®,
Windows®, Explorer® and Microsoft Project® are registered trademarks of Microsoft Corporation. All other
trademarks and product names are property of their respective holders.

Please send comments and questions to:
Technical Publications
Inflectra Corporation
8121 Georgia Ave, Suite 504
Silver Spring, MD 20910-4957
U.S.A.

support@inflectra.com

mailto:support@inflectra.com

